「《双対性理論》」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
8行目: 8行目:
  
  
:<math>f^*(\xi):=\sup_{x\in{\mathbf{R}^n}} \{ \, \xi^{\top}x - f(x) \, \}</math>
+
<table align="center">
 +
<tr>
 +
<td><math>f^*(\xi):=\sup_{x\in{\mathbf{R}^n}} \{ \, \xi^{\top}x - f(x) \, \}</math>
 +
</td>
 +
</tr>
 +
</table>
  
  
16行目: 21行目:
  
  
:<math>
+
<table align="center">
 +
<tr>
 +
<td><math>
 
\begin{array}{lll}
 
\begin{array}{lll}
 
\mbox{(P)} & \min_{x\in \mathbf{R}^n}& \varphi{(x)} \\
 
\mbox{(P)} & \min_{x\in \mathbf{R}^n}& \varphi{(x)} \\
22行目: 29行目:
 
\end{array}
 
\end{array}
 
</math>
 
</math>
 +
</td>
 +
</tr>
 +
</table>
  
  
27行目: 37行目:
  
  
:<math>U:=\{u\in{\mathbf{R}^m}\,| \inf_{x\in{\mathbf{R}^n}}f(x,u)<+\infty\}\quad V:=\{v\in{\mathbf{R}^n}\,|\inf_{y\in{\mathbf{R}^m}}f^{*}(v,y)<+\infty\}</math>
+
<table align="center">
 +
<tr>
 +
<td><math>U:=\{u\in{\mathbf{R}^m}\,| \inf_{x\in{\mathbf{R}^n}}f(x,u)<+\infty\}\quad V:=\{v\in{\mathbf{R}^n}\,|\inf_{y\in{\mathbf{R}^m}}f^{*}(v,y)<+\infty\}</math>
 +
</td>
 +
</tr>
 +
</table>
  
  
44行目: 59行目:
  
  
:<math>\begin{array}{llll}
+
<table align="center">
\mbox{min}_{x\in \mathbf{R}^n} & c^{\top}x+k(x)+h(b-Ax) & & \mbox{(1)}\\
+
<tr>
 +
<td><math>
 +
\begin{array}{llll}
 +
\mbox{min}_{x\in \mathbf{R}^n} & c^{\top}x+k(x)+h(b-Ax) & & (1)\\
 
\\
 
\\
\mbox{max}_{y\in \mathbf{R}^m} & b^{\top}y-h^{*}(y)-k^{*}(A^{\top}y-c) & & \mbox{(2)}
+
\mbox{max}_{y\in \mathbf{R}^m} & b^{\top}y-h^{*}(y)-k^{*}(A^{\top}y-c) & & (2)
 
\end{array}
 
\end{array}
 
</math>
 
</math>
 +
</td>
 +
</tr>
 +
</table>
  
  
55行目: 76行目:
  
  
:<math>
+
<table align="center">
 +
<tr>
 +
<td>
 +
<math>
 
\begin{array}{clcll}
 
\begin{array}{clcll}
 
(\mbox{P}_{LP}) & \mbox{min.} & c^{\top}x & s. t. & x\ge{0}, \ Ax\ge{b}. \\
 
(\mbox{P}_{LP}) & \mbox{min.} & c^{\top}x & s. t. & x\ge{0}, \ Ax\ge{b}. \\
 
(\mbox{D}_{LP}) & \mbox{max.} & b^{\top}y & s. t. & y\ge{0}, \ A^{\top}y\le{c}.  
 
(\mbox{D}_{LP}) & \mbox{max.} & b^{\top}y & s. t. & y\ge{0}, \ A^{\top}y\le{c}.  
 
\end{array}
 
\end{array}
</math>
+
</math></td>
 +
</tr>
 +
</table>
  
  
66行目: 92行目:
  
  
:<math>L(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)-y^{\top}u\,\}</math>    <math>\mbox{(3)}\,</math>
+
<table align="center">
 
+
<tr>
 +
<td><math>L(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)-y^{\top}u\,\}</math></td>
 +
<td width="100" align="right"><math>(3)\,</math>
 +
</td>
 +
</tr>
 +
</table>
 +
    
  
 
と定義する.<math>-L(x,\cdot)=(f(x,\cdot))^{*}, f(x,\cdot)=(-L(x,\cdot))^{*}</math>が成立しているので,
 
と定義する.<math>-L(x,\cdot)=(f(x,\cdot))^{*}, f(x,\cdot)=(-L(x,\cdot))^{*}</math>が成立しているので,
  
 
+
<table align="center">
:<math>\varphi{(x)}=\sup_{y}L(x,y), \quad\quad \psi{(y)}=\inf_{x}L(x,y)</math>    <math>\mbox{(4)}\,</math>
+
<tr>
 +
<td>
 +
<math>\varphi{(x)}=\sup_{y}L(x,y), \quad\quad \psi{(y)}=\inf_{x}L(x,y)</math></td>
 +
<td width="100" align="right"><math>(4)\,</math>
 +
</td>
 +
</tr>
 +
</table>
  
  
 
となる.通常,<math>\mbox{inf}_{x}L(x,\bar{y})=L(\bar{x},\bar{y})=\mbox{sup}_{y}L(\bar{x},y)</math>すなわち,すべての <math>x\in{\mathbf{R}^n}</math>と<math>y\in{\mathbf{R}^m}</math> に対して<math>L(x,\bar{y})\ge{L(\bar{x},\bar{y})}\ge{L(\bar{x},y)}</math>が成り立つとき,<math>(\bar{x},\bar{y})</math> を関数 <math>L\, </math> の <math>\mathbf{R}^{n}\times{\mathbf{R}^m}</math> 上での鞍点 (saddle point) と呼ぶ.(4) により,
 
となる.通常,<math>\mbox{inf}_{x}L(x,\bar{y})=L(\bar{x},\bar{y})=\mbox{sup}_{y}L(\bar{x},y)</math>すなわち,すべての <math>x\in{\mathbf{R}^n}</math>と<math>y\in{\mathbf{R}^m}</math> に対して<math>L(x,\bar{y})\ge{L(\bar{x},\bar{y})}\ge{L(\bar{x},y)}</math>が成り立つとき,<math>(\bar{x},\bar{y})</math> を関数 <math>L\, </math> の <math>\mathbf{R}^{n}\times{\mathbf{R}^m}</math> 上での鞍点 (saddle point) と呼ぶ.(4) により,
 
  
  
92行目: 129行目:
  
 
が成立する.(iv) を[[鞍点定理]] (saddle point theorem) と呼ぶ.非線形計画問題
 
が成立する.(iv) を[[鞍点定理]] (saddle point theorem) と呼ぶ.非線形計画問題
 +
  
 
:<math>\mbox{(NLP)} \; \;  
 
:<math>\mbox{(NLP)} \; \;  
102行目: 140行目:
  
  
:<math>
+
<table align="center">
 +
<tr>
 +
<td><math>
 
\begin{array}{rll}
 
\begin{array}{rll}
 
F(x) &:= & (g_{1}(x),\ldots,g_{k}(x),h_{1}(x),\ldots,h_{l}(x))^{\top}\\
 
F(x) &:= & (g_{1}(x),\ldots,g_{k}(x),h_{1}(x),\ldots,h_{l}(x))^{\top}\\
109行目: 149行目:
 
f(x,u) &:= & f_{0}(x)+\theta{(F(x)+u)}
 
f(x,u) &:= & f_{0}(x)+\theta{(F(x)+u)}
 
\end{array}
 
\end{array}
</math>
+
</math></td>
 +
</tr>
 +
</table>
  
  
 
とおくと,(3) により<math>y=(\lambda,\mu)=(\lambda_{1},\ldots,\lambda_{k},\mu_{1},\ldots,\mu_{l}) \in{\mathbf{R}^{k}_{+}\times{\mathbf{R}^{l}}}</math>に対する問題(NLP)のラグランジュ関数は
 
とおくと,(3) により<math>y=(\lambda,\mu)=(\lambda_{1},\ldots,\lambda_{k},\mu_{1},\ldots,\mu_{l}) \in{\mathbf{R}^{k}_{+}\times{\mathbf{R}^{l}}}</math>に対する問題(NLP)のラグランジュ関数は
  
 
+
<table align="center">
:<math>L(x,\lambda,\mu)=f_{0}(x)+\sum_{i=1}^{k}\lambda_{i}g_{i}(x)
+
<tr>
                 +\sum_{j=1}^{l}\mu_{j}h_{j}(x)</math>    <math>\mbox{(5)}\,</math>
+
<td><math>L(x,\lambda,\mu)=f_{0}(x)+\sum_{i=1}^{k}\lambda_{i}g_{i}(x)
 +
                 +\sum_{j=1}^{l}\mu_{j}h_{j}(x)</math></td>
 +
<td width="100" align="right"><math>(5)\,</math></td>
 +
</tr>
 +
</table>
  
  
122行目: 168行目:
  
  
:<math>
+
<table align="center">
 +
<tr>
 +
<td><math>
 
\begin{array}{cllll}
 
\begin{array}{cllll}
 
(\mbox{P}_{L}) & \mbox{min.}  
 
(\mbox{P}_{L}) & \mbox{min.}  
134行目: 182行目:
 
\end{array}
 
\end{array}
 
</math>
 
</math>
 +
</td>
 +
</tr>
 +
</table>
  
  
 
となり,一般に問題<math>(\mbox{D}_{L})</math>をラグランジュの双対問題 (Lagrangian dual problem)と呼ぶ.鞍点定理により,<math>L\, </math> の鞍点 <math>(\bar{x},\bar{\lambda},\bar{\mu})</math> が存在すれば,つまり  
 
となり,一般に問題<math>(\mbox{D}_{L})</math>をラグランジュの双対問題 (Lagrangian dual problem)と呼ぶ.鞍点定理により,<math>L\, </math> の鞍点 <math>(\bar{x},\bar{\lambda},\bar{\mu})</math> が存在すれば,つまり  
  
 
+
<table align="center">
:<math>\max_{\lambda\ge{0},\mu}L(\bar{x},\lambda,\mu)=L(\bar{x},\bar{\lambda},\bar{\mu})
+
<tr>
         =\min_{x}L(x,\bar{\lambda},\bar{\mu})</math>
+
<td><math>
 +
\max_{\lambda\ge{0},\mu}L(\bar{x},\lambda,\mu)=L(\bar{x},\bar{\lambda},\bar{\mu})
 +
         =\min_{x}L(x,\bar{\lambda},\bar{\mu})</math></td>
 +
</tr>
 +
</table>
  
  
146行目: 201行目:
  
  
:<math>\bar{L}(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)+r\sigma{(u)}-y^{\top}u\,\}</math>
+
<table align="center">
 +
<tr>
 +
<td><math>\bar{L}(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)+r\sigma{(u)}-y^{\top}u\,\}</math>
 +
</td>
 +
</tr>
 +
</table>
  
  

2007年7月14日 (土) 23:04時点における版

【そうついせいりろん (duality theory)】

 双対性理論 (duality theory)は,非線形計画のみならず線形計画,多目的計画,離散凸解析などの分野で主問題とその双対問題の関係,および集合や関数の双対関係を説明する重要な基礎理論である [1, 2, 3, 4].

 「双対」 (dual) と「共役」 (conjugate) は元々同義語として用いられ,数学の関数解析の分野では,ノルム空間 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X\, } 上の有界線形汎関数の全体を構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X\,} の双対空間 (dual space) または共役空間 (conjugate space) といい, と表して, における の値を構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \langle x, x^{*}\rangle\,} または と書く. 次元実ユークリッド空間 の場合は, は同一視でき, となり, の内積 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle x^{\top}x^{*}\,} となる.以下に述べる事柄は,無限次元空間に対しても拡張できるが,ここでは簡単のため に限定して説明する.

 空間 上で定義された拡張実数値関数 に対して(ただし,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \bar{\mathbf{R}}=\mathbf{R}\cup \{ \infty , -\infty\}} ),



で定義される関数 の共役関数 (conjugate function) という.共役関数 に対して,さらにその共役関数 を考えることができるが, が下半連続な真凸関数のときには, に一致する.構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f\, } を対応させる写像をルジャンドル-フェンシェル変換 (Legendre-Fenchel transform) と呼ぶ.

 下半連続な真凸関数 に対して,関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \varphi : \mathbf{R}^n \to \bar{\mathbf{R}}\,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \psi : \mathbf{R}^m \to \bar{\mathbf{R}}\,} をそれぞれ 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \psi{(y)}:=-f^{*}(0,y)\,} で定義し,次の問題(P)と(D)を主問題 (primal problem) とその双対問題 (dual problem) と呼ぶ [1, 4].


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \begin{array}{lll} \mbox{(P)} & \min_{x\in \mathbf{R}^n}& \varphi{(x)} \\ \mbox{(D)} & \max_{y\in \mathbf{R}^m}& \psi{(y)} \end{array} }


また,


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle U:=\{u\in{\mathbf{R}^m}\,| \inf_{x\in{\mathbf{R}^n}}f(x,u)<+\infty\}\quad V:=\{v\in{\mathbf{R}^n}\,|\inf_{y\in{\mathbf{R}^m}}f^{*}(v,y)<+\infty\}}


とおくと,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle U\, }構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle V\, } は凸集合となる.このとき,以下が成立する.


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{(i)}\,} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{inf}_{x}\varphi{(x)}\ge\mbox{sup}_{y}\psi{(y)}}

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{(ii)}\,} または


ここで,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{int}\,U}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle U\, } の内部を表す.(i)を弱双対定理 (weak duality theorem),(ii)を双対定理 (duality theorem) と呼び,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}} が満たされるとき,主問題(P)と双対問題(D)の間に双対性 (duality) が成立するという.(i)により,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{sup}_{y}\psi{(y)}=+\infty} なら主問題(P)は実行可能解を持たないが,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle -\infty<\varphi{(\bar{x})}=\psi{(\bar{y})}<+\infty} となる 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \bar{x}}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \bar{y}} が存在すれば,それぞれ(P)と(D)の最適解となり,強い意味の双対性が成立する.一方,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{inf}_{x}\varphi{(x)}>\mbox{sup}_{y}\psi{(y)}} となるとき,主問題と双対問題の間に双対性のギャップ (duality gap) が存在するという.

 主問題(P)において,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(x,u):=c^{\top}x+k(x)+h(b-Ax+u)} (ただし,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle k: \mathbf{R}^n\to\bar{\mathbf{R}}}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle h: \mathbf{R}^m\to\bar{\mathbf{R}}} は下半連続な真凸関数で構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A\in{\mathbf{R}^{m\times{n}}}} , 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle b\in{\mathbf{R}^m}} , 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle c\in{\mathbf{R}^n}} )とすると,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f^{*}(v,y)=-b^{\top}y+h^{*}(y)+k^{*}(A^{\top}y-c+v)} となり [4],主問題(P)と双対問題(D)はそれぞれ


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \begin{array}{llll} \mbox{min}_{x\in \mathbf{R}^n} & c^{\top}x+k(x)+h(b-Ax) & & (1)\\ \\ \mbox{max}_{y\in \mathbf{R}^m} & b^{\top}y-h^{*}(y)-k^{*}(A^{\top}y-c) & & (2) \end{array} }


となる.ここで構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle b\in\mbox{int}\,(A\mbox{dom}k+\mbox{dom}h)\,} または構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle c\in\mbox{int}\,(A^{\top}\mbox{dom}h^{*}-\mbox{dom}k^{*})\,} が成立すれば,(ii)により主問題 (1) と双対問題 (2) の間に双対性が成立する.(ただし,dom は拡張実数値関数の実効定義域を表す.)これをフェンシェルの双対性 (Fenchel duality) と呼んでいる.通常は,簡略化して 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle c\, }構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle b\, } を零ベクトル,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle -A\, } を恒等写像として,新たに構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(x)\, } を凸関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f_1(x):=k(x)\,} と凹関数 の差で表し,主問題 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{min}_{x}\{f_1(x)-f_2(x)\}\,} に対して,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{max}_{y}\{f_{2}^{*}(y)-f_{1}^{*}(y)\}} をフェンシェルの双対問題 (Fenchel dual problem) と呼ぶ.ただし,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f_{2}^{*}(y):=\mbox{inf}_{x\in{\mathbf{R}^n}}\{y^{\top}x-f_{2}(x)\}} .双対性は 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{int}\,(\mbox{dom}f_1)\,\cap\, \mbox{int}\,(\mbox{dom}f_2)\neq\emptyset} のとき成立する.また,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle k(x):=\mbox{sup}_{s\le{0}}x^{\top}s, h(z):=\mbox{sup}_{w\ge{0}}z^{\top}w} とすると,(1) と(2) は線形計画の主問題と双対問題となる [2, 4].


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \begin{array}{clcll} (\mbox{P}_{LP}) & \mbox{min.} & c^{\top}x & s. t. & x\ge{0}, \ Ax\ge{b}. \\ (\mbox{D}_{LP}) & \mbox{max.} & b^{\top}y & s. t. & y\ge{0}, \ A^{\top}y\le{c}. \end{array} }


次に,ラグランジュ関数 (Lagrangian function) を


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle L(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)-y^{\top}u\,\}} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (3)\,}

    

と定義する.構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle -L(x,\cdot)=(f(x,\cdot))^{*}, f(x,\cdot)=(-L(x,\cdot))^{*}} が成立しているので,

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \varphi{(x)}=\sup_{y}L(x,y), \quad\quad \psi{(y)}=\inf_{x}L(x,y)} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (4)\,}


となる.通常,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{inf}_{x}L(x,\bar{y})=L(\bar{x},\bar{y})=\mbox{sup}_{y}L(\bar{x},y)} すなわち,すべての 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle x\in{\mathbf{R}^n}}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle y\in{\mathbf{R}^m}} に対して構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle L(x,\bar{y})\ge{L(\bar{x},\bar{y})}\ge{L(\bar{x},y)}} が成り立つとき,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\bar{x},\bar{y})} を関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle L\, }構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathbf{R}^{n}\times{\mathbf{R}^m}} 上での鞍点 (saddle point) と呼ぶ.(4) により,


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{(iii)}\,} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{inf}_{x}\varphi{(x)}=\mbox{inf}_{x}\,[\,\mbox{sup}_{y}L(x,y)\,] \ge\mbox{sup}_{y}\,[\,\mbox{inf}_{x}L(x,y)\,]=\mbox{sup}_{y}\psi{(y)}}


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \varphi{(\bar{x})}=\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}=\psi{(\bar{y})} \Longleftrightarrow (\bar{x},\bar{y})}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle L\,} の鞍点

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \Longleftrightarrow \mbox{min}_{x}\mbox{sup}_{y}L(x,y)=\mbox{max}_{y}\mbox{inf}_{x}L(x,y) \Longleftrightarrow \varphi{(\bar{x})}=L(\bar{x},\bar{y})=\psi{(\bar{y})}}


が成立する.(iv) を鞍点定理 (saddle point theorem) と呼ぶ.非線形計画問題


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{(NLP)} \; \; \mbox{min.} \ f_{0}(x) \quad \mbox{s. t.} \; \; g_{i}(x)\le{0} \ (i=1,\ldots, k), \; \; h_{j}(x)=0 \ (j=1,\ldots,l),}


(ただし,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathbf{R}^n} で定義された実数値関数,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle k+l=m} ) に対して,


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \begin{array}{rll} F(x) &:= & (g_{1}(x),\ldots,g_{k}(x),h_{1}(x),\ldots,h_{l}(x))^{\top}\\ \theta(w) &:= & \sup_{\lambda,\mu}\{\lambda^{\top}w_{1}+\mu^{\top}w_{2}\,|\, (\lambda,\mu)\in{\mathbf{R}^{k}_{+}\times{\mathbf{R}^{l}}},w=(w_1,w_2)^{\top}\}\\ f(x,u) &:= & f_{0}(x)+\theta{(F(x)+u)} \end{array} }


とおくと,(3) により構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle y=(\lambda,\mu)=(\lambda_{1},\ldots,\lambda_{k},\mu_{1},\ldots,\mu_{l}) \in{\mathbf{R}^{k}_{+}\times{\mathbf{R}^{l}}}} に対する問題(NLP)のラグランジュ関数は

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle L(x,\lambda,\mu)=f_{0}(x)+\sum_{i=1}^{k}\lambda_{i}g_{i}(x) +\sum_{j=1}^{l}\mu_{j}h_{j}(x)} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (5)\,}


となる.この をラグランジュ乗数 (Lagrange multipliers) と呼ぶ.このとき,主問題と双対問題は


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \begin{array}{cllll} (\mbox{P}_{L}) & \mbox{min.} & \displaystyle \sup_{\lambda\ge{0},\mu} L(x, \lambda, \mu) & \mbox{s. t.} & \displaystyle{x \in {\mathbf{R}^n}}, \\ (\mbox{D}_{L}) & \mbox{max.} & \displaystyle \inf_{x} L(x,\lambda,\mu) & \mbox{s. t.} & \displaystyle{0 \le \lambda \in {\mathbf{R}^{k}}}, \displaystyle \mu \in {\mathbf{R}^{l}}, \end{array} }


となり,一般に問題構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\mbox{D}_{L})} をラグランジュの双対問題 (Lagrangian dual problem)と呼ぶ.鞍点定理により,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle L\, } の鞍点 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\bar{x},\bar{\lambda},\bar{\mu})} が存在すれば,つまり

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \max_{\lambda\ge{0},\mu}L(\bar{x},\lambda,\mu)=L(\bar{x},\bar{\lambda},\bar{\mu}) =\min_{x}L(x,\bar{\lambda},\bar{\mu})}


が成立すれば,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \bar{x}}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\bar{\lambda},\bar{\mu})} はそれぞれ問題構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\mbox{P}_{L})\,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\mbox{D}_{L})\,} の最適解となり最適値が一致する.これをラグランジュの双対性 (Lagrangian duality) と呼ぶ.(iv) により,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{min}_{x}\mbox{sup}_{y}L(x,y)=\mbox{max}_{y}\mbox{inf}_{x}L(x,y)\,} が成立すれば,この双対性が保証される.この等式に対する十分条件を述べた定理をミニマックス定理(minimax theorem) と呼ぶ [1]. 逆に,主問題の目的関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f_0\, } と制約関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle g_i\, } がすべて凸で, がすべてアフィン関数であるような凸計画問題 (convex programming problem) においては,適当な条件のもとで,問題構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\mbox{P}_{L})\,} の最適解 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \bar{x}} に対して,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \bar{\lambda}\ge{0}} であるようなラグランジュ乗数 が存在して,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\bar{x},\bar{\lambda},\bar{\mu})} がラグランジュ関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle L\, } の鞍点となる.さらに,次のような拡張ラグランジュ関数(augmented Lagrangian function) に基づく双対性も考えられている [2, 3, 4].


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \bar{L}(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)+r\sigma{(u)}-y^{\top}u\,\}}


ただし,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle r\, } は正定数,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \sigma:\mathbf{R}^{m}\rightarrow\bar{\mathbf{R}}\,} に対して 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle 0=\sigma{(0)}<\sigma{(u)}\,} を満足する下半連続な真凸関数である.関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \sigma\,} の例としては 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \sigma{(u)}:=\frac{1}{2}\|u\|^{2}\,} などがある.



参考文献

[1] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.

[2] 福島雅夫,『非線形最適化の基礎』, 朝倉書店, 2001.

[3] 今野浩, 山下浩,『非線形計画法』, 日科技連, 1978.

[4] R.T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer, Berlin, 1998.