積率母関数
【せきりつぼかんすう (moment generating function)】
累積分布関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F(x) \,} をもつ確率変数 に対して, 実数 をパラメータとする関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle \phi(\theta)=\mathrm{E}(\mathrm{e}^{\theta X})=\int \mathrm{e}^{\theta x} \mathrm{d}F(x) \,} を積率母関数と呼ぶ. 積率母関数が存在するためには, 任意の次数のモーメントが存在しなければならないが, よく使われる多くの分布は積率母関数が存在する. 積率母関数が存在する場合には, に形式的に 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{i}t \,} (構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{i} \,} は虚数単位)を代入することで特性関数が得られる.