拡散過程

提供: ORWiki
ナビゲーションに移動 検索に移動

【かくさんかてい (diffusion process)】

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \{B(t)\}_{t \ge 0} \,} をブラウン運動として, 確率微分方程式

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathrm{d} D(t)= \mu(D(t),t)\,\mathrm{d} t + \,} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \sigma(D(t),t)\, \mathrm{d} B(t) \,}

によって与えられる確率過程構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \{D(t)\}_{t \ge 0} \,} のこと. 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mu(x,t) \,} , 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \sigma(x,t) \,} をそれぞれドリフト関数, 拡散関数と呼ぶ.

拡散過程は連続な標本路をもつ強マルコフ過程で, その生成作用素はフォッカー・プランク方程式と呼ばれる拡散方程式

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \partial f(x,t)/\partial t = -\partial [\mu(x,t)\,f(x,t)] / \partial x + \frac{1}{2} \partial^2 [\sigma^2(x,t)\,f(x,t)] / \partial x^2 \,}

によって与えられる.