《不変埋没原理》

提供: ORWiki
ナビゲーションに移動 検索に移動

【ふへんまいぼつげんり (principle of invariant imbedding)】

 ある問題を解こうとするとき, この問題を含む部分問題からなる群(族)を考えることを「埋め込み」(imbedding)という. すなわち, 与問題をある問題群の1つと見做すことである. このとき, 問題の大きさは小さい(易しい)ものから大きい(難しい)ものまであり, 一番大きい(解きたい)問題が与問題である. しかし, 問題の「構造」は不変である. さらに, 相隣る問題間の関係式を導き, これを解くことによって, 与問題の「解」を求める. このような方法で解に至るまでを, 不変埋没原理 (principle of invariant imbedding)による方法という [1] [4] [5].

 たとえば,「1から10までの自然数の和を求める」問題を考えてみよう. 以下ではいつも「1から」(前向きの方法で)考えることにして, この問題を で表わし, 「解」(この場合, 和)を としよう. このとき, 「1から までの自然数の和を求める」部分問題 からなる群 を考える. このこと自体が埋め込みである. 部分問題 の解(和)を とする. 最後の(一番大きい)問題 の解 が求める解である. このとき, 最初の (一番易しい) 問題の解は であり, 相隣る問題の解 の間に漸化式



が成り立つ. 漸化式を の順に前向きに逐次解くことによって, を得る. 他方, 「 から(いつも!)10までの自然数の和を求める」部分問題 の族を考えても, 上述と同様に解くことができる. これを後向きの埋め込みという.

 一般の問題では, どのような大きさの問題群に埋め込むか, 関係式が導けるか, 解けるか, 解き易いかなど, 埋め込み方に工夫を要する. たとえば, 多段階の最適化問題



の最大値 と最大点 を求めるには, 新たなパラメータ を含む部分問題群  :



に埋め込むと, パラメータ空間列 は前向きの再帰式


は結合演算の左単位元


で生成され, 最適値関数 は次の後向き再帰式を満たす:



これを後ろから逐次解き, 最後の を代入すると求める最大値が得られる:

 また, 非最適化問題としては, 木の総容量など, 多重和 (多重和の解法)



を求める問題があって, やはりパラメータを含む埋め込みによって解くことができる.

 このようなパラメータを導入した埋め込みは非可分性に起因し, 単一評価系, 複合評価系の最適化, 期待値最適化, 多重和, 多重積分 (多重積分の解法) などで考えられる [2] [3]. 不変埋没原理は変数の離散と連続, システムの確定や確率やファジィ, 問題の最適と非最適を問わず, 歴史的には数学(微分方程式, 偏微分方程式の応用), 物理数学などで, また近年はコンピュータサイエンスで幅広く用いられている.



参考文献

[1] R. E. Bellman and E. D. Denman, Invariant Imbedding, Lect. Notes in Operation Research and Mathematical Systems, Vol. 52, Springer-Verlag, Berlin, 1971.

[2] S. Iwamoto and T. Fujita, "Stochastic Decision-making in a Fuzzy Environment," Journal of the Operations Research Society of Japan, 38 (1995), 467-482.

[3] 岩本誠一,「不変埋没によるファジィ動的計画法」, 日本オペレーションズ・リサーチ学会第33回シンポジウム, 25-33, 1995.

[4] E. S. Lee, Quasilinearization and Invariant Imbedding, Academic Press, 1968.

[5] 相良節夫, 杉坂政典,「Invariant Imbedding について」,『システムと制御』, 17 (1973), 596-601.