「準モンテカルロ法」の版間の差分
ナビゲーションに移動
検索に移動
2行目: | 2行目: | ||
超立方体上で定義された積分の近似値を計算するために, | 超立方体上で定義された積分の近似値を計算するために, | ||
− | + | [[乱数]]の代わりに[[準乱数]]を使う方法のこと. | |
被積分関数の値を繰り返し計算する点の座標を準乱数で定め, | 被積分関数の値を繰り返し計算する点の座標を準乱数で定め, | ||
計算した<math>N</math>個の関数値の算術平均をもって近似値とする. | 計算した<math>N</math>個の関数値の算術平均をもって近似値とする. | ||
被積分関数がKoksma-Hlawkaの意味で有界変動であれば, | 被積分関数がKoksma-Hlawkaの意味で有界変動であれば, | ||
− | <math>N</math> → ∞ | + | <math>N</math> → ∞ のとき[[モンテカルロ法]]よりも速く真の値に収束する. |
5~数十次元,時には数百次元の積分にも使われることがある. | 5~数十次元,時には数百次元の積分にも使われることがある. |