「双対性理論」の版間の差分
3行目: | 3行目: | ||
[[双対性理論]] (duality theory)は,非線形計画のみならず線形計画,多目的計画,離散凸解析などの分野で主問題とその双対問題の関係,および集合や関数の双対関係を説明する重要な基礎理論である [1, 2, 3, 4]. | [[双対性理論]] (duality theory)は,非線形計画のみならず線形計画,多目的計画,離散凸解析などの分野で主問題とその双対問題の関係,および集合や関数の双対関係を説明する重要な基礎理論である [1, 2, 3, 4]. | ||
− | 「双対」 (dual) と「共役」 (conjugate) は元々同義語として用いられ,数学の関数解析の分野では,ノルム空間 <math>X\, </math> 上の有界線形汎関数の全体を<math>X\,</math> の双対空間 (dual space) または共役空間 (conjugate space) といい,<math>X^{*}\, </math> と表して,<math>x\in{X}\, </math> における <math>x^{*}\in{X^*}</math> の値を<math>\langle x, x^{*}\rangle</math> または <math>x^{*}(x)</math> と書く.<math>X\, </math> が <math>n\, </math> 次元実ユークリッド空間 <math>\mathbf{R}^n</math> の場合は,<math>(\mathbf{R}^n)^{*}</math> と <math>\mathbf{R}^n</math> は同一視でき,<math>(\mathbf{R}^n)^{**}=\mathbf{R}^n</math> となり,<math>\langle x, x^{*}\rangle</math> は<math>x\, </math> と <math>x^{*}\, </math> の内積 <math>x^{\top}x^{*}</math> となる.以下に述べる事柄は,無限次元空間に対しても拡張できるが,ここでは簡単のため <math>\mathbf{R}^n</math> に限定して説明する. | + | 「双対」 (dual) と「共役」 (conjugate) は元々同義語として用いられ,数学の関数解析の分野では,ノルム空間 <math>X\, </math> 上の有界線形汎関数の全体を<math>X\,</math> の双対空間 (dual space) または共役空間 (conjugate space) といい,<math>X^{*}\, </math> と表して,<math>x\in{X}\, </math> における <math>x^{*}\in{X^*}\,</math> の値を<math>\langle x, x^{*}\rangle\,</math> または <math>x^{*}(x)\,</math> と書く.<math>X\, </math> が <math>n\, </math> 次元実ユークリッド空間 <math>\mathbf{R}^n</math> の場合は,<math>(\mathbf{R}^n)^{*}</math> と <math>\mathbf{R}^n</math> は同一視でき,<math>(\mathbf{R}^n)^{**}=\mathbf{R}^n</math> となり,<math>\langle x, x^{*}\rangle</math> は<math>x\, </math> と <math>x^{*}\, </math> の内積 <math>x^{\top}x^{*}\,</math> となる.以下に述べる事柄は,無限次元空間に対しても拡張できるが,ここでは簡単のため <math>\mathbf{R}^n\,</math> に限定して説明する. |
空間 <math>\mathbf{R}^n</math> 上で定義された拡張実数値関数 <math>f: \mathbf{R}^n\to\bar{\mathbf{R}}</math> に対して(ただし,<math>\bar{\mathbf{R}}=\mathbf{R}\cup \{ \infty , -\infty\}</math>), | 空間 <math>\mathbf{R}^n</math> 上で定義された拡張実数値関数 <math>f: \mathbf{R}^n\to\bar{\mathbf{R}}</math> に対して(ただし,<math>\bar{\mathbf{R}}=\mathbf{R}\cup \{ \infty , -\infty\}</math>), | ||
11行目: | 11行目: | ||
− | で定義される関数 <math>f^*\, </math> を <math>f\, </math> の共役関数 (conjugate function) という.共役関数 <math>f^*\, </math> に対して,さらにその共役関数 <math>f^{**}=(f^*)^{*}</math> を考えることができるが,<math>f\, </math> が下半連続な真凸関数のときには,<math>f^{**}\, </math> は <math>f\, </math> に一致する.<math>f\, </math> に <math>f^*\, </math> を対応させる写像をルジャンドル-フェンシェル変換 (Legendre-Fenchel transform) と呼ぶ. | + | で定義される関数 <math>f^*\, </math> を <math>f\, </math> の共役関数 (conjugate function) という.共役関数 <math>f^*\, </math> に対して,さらにその共役関数 <math>f^{**}=(f^*)^{*}\,</math> を考えることができるが,<math>f\, </math> が下半連続な真凸関数のときには,<math>f^{**}\, </math> は <math>f\, </math> に一致する.<math>f\, </math> に <math>f^*\, </math> を対応させる写像をルジャンドル-フェンシェル変換 (Legendre-Fenchel transform) と呼ぶ. |
− | 下半連続な真凸関数 <math>f: \mathbf{R}^n\times{\mathbf{R}^m}\to\bar{\mathbf{R}}</math>に対して,関数 <math>\varphi : \mathbf{R}^n \to \bar{\mathbf{R}}</math> と <math>\psi : \mathbf{R}^m \to \bar{\mathbf{R}}</math> をそれぞれ <math>\varphi{(x)}:=f(x,0)</math> と <math>\psi{(y)}:=-f^{*}(0,y)</math> で定義し,次の問題(P)と(D)を主問題 (primal problem) とその双対問題 (dual problem) と呼ぶ [1, 4]. | + | 下半連続な真凸関数 <math>f: \mathbf{R}^n\times{\mathbf{R}^m}\to\bar{\mathbf{R}}\,</math>に対して,関数 <math>\varphi : \mathbf{R}^n \to \bar{\mathbf{R}}\,</math> と <math>\psi : \mathbf{R}^m \to \bar{\mathbf{R}}\,</math> をそれぞれ <math>\varphi{(x)}:=f(x,0)\,</math> と <math>\psi{(y)}:=-f^{*}(0,y)\,</math> で定義し,次の問題(P)と(D)を主問題 (primal problem) とその双対問題 (dual problem) と呼ぶ [1, 4]. |
33行目: | 33行目: | ||
− | <math>\mbox{(i)}</math> <math>\mbox{inf}_{x}\varphi{(x)}\ge\mbox{sup}_{y}\psi{(y)}</math> | + | <math>\mbox{(i)}\,</math> <math>\mbox{inf}_{x}\varphi{(x)}\ge\mbox{sup}_{y}\psi{(y)}</math> |
− | <math>\mbox{(ii)}</math> <math>0\in{\mbox{int}\,U}\;</math> または <math>\; 0\in{\mbox{int}\,V} | + | <math>\mbox{(ii)}\,</math> <math>0\in{\mbox{int}\,U}\;</math> または <math>\; 0\in{\mbox{int}\,V} |
\Longrightarrow\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}</math> | \Longrightarrow\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}</math> | ||
52行目: | 52行目: | ||
− | となる.ここで<math>b\in\mbox{int}\,(A\mbox{dom}k+\mbox{dom}h)</math> または<math>c\in\mbox{int}\,(A^{\top}\mbox{dom}h^{*}-\mbox{dom}k^{*})</math> が成立すれば,(ii)により主問題 (1) と双対問題 (2) の間に双対性が成立する.(ただし,dom は拡張実数値関数の実効定義域を表す.)これを[[フェンシェルの双対性]] (Fenchel duality) と呼んでいる.通常は,簡略化して <math>c\, </math> と <math>b\, </math> を零ベクトル,<math>-A\, </math> を恒等写像として,新たに<math>f(x)\, </math> を凸関数 <math>f_1(x):=k(x)</math> と凹関数 <math>f_2(x):=-h(x)</math> の差で表し,主問題 <math>\mbox{min}_{x}\{f_1(x)-f_2(x)\}</math>に対して,<math>\mbox{max}_{y}\{f_{2}^{*}(y)-f_{1}^{*}(y)\}</math> をフェンシェルの双対問題 (Fenchel dual problem) と呼ぶ.ただし,<math>f_{2}^{*}(y):=\mbox{inf}_{x\in{\mathbf{R}^n}}\{y^{\top}x-f_{2}(x)\}</math>.双対性は <math>\mbox{int}\,(\mbox{dom}f_1)\,\cap\, \mbox{int}\,(\mbox{dom}f_2)\neq\emptyset</math> のとき成立する.また,<math>k(x):=\mbox{sup}_{s\le{0}}x^{\top}s, h(z):=\mbox{sup}_{w\ge{0}}z^{\top}w</math> とすると,(1) と(2) は線形計画の主問題と双対問題となる [2, 4]. | + | となる.ここで<math>b\in\mbox{int}\,(A\mbox{dom}k+\mbox{dom}h)\,</math> または<math>c\in\mbox{int}\,(A^{\top}\mbox{dom}h^{*}-\mbox{dom}k^{*})\,</math> が成立すれば,(ii)により主問題 (1) と双対問題 (2) の間に双対性が成立する.(ただし,dom は拡張実数値関数の実効定義域を表す.)これを[[フェンシェルの双対性]] (Fenchel duality) と呼んでいる.通常は,簡略化して <math>c\, </math> と <math>b\, </math> を零ベクトル,<math>-A\, </math> を恒等写像として,新たに<math>f(x)\, </math> を凸関数 <math>f_1(x):=k(x)\,</math> と凹関数 <math>f_2(x):=-h(x)\,</math> の差で表し,主問題 <math>\mbox{min}_{x}\{f_1(x)-f_2(x)\}\,</math>に対して,<math>\mbox{max}_{y}\{f_{2}^{*}(y)-f_{1}^{*}(y)\}</math> をフェンシェルの双対問題 (Fenchel dual problem) と呼ぶ.ただし,<math>f_{2}^{*}(y):=\mbox{inf}_{x\in{\mathbf{R}^n}}\{y^{\top}x-f_{2}(x)\}</math>.双対性は <math>\mbox{int}\,(\mbox{dom}f_1)\,\cap\, \mbox{int}\,(\mbox{dom}f_2)\neq\emptyset</math> のとき成立する.また,<math>k(x):=\mbox{sup}_{s\le{0}}x^{\top}s, h(z):=\mbox{sup}_{w\ge{0}}z^{\top}w</math> とすると,(1) と(2) は線形計画の主問題と双対問題となる [2, 4]. |
66行目: | 66行目: | ||
− | :<math>L(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)-y^{\top}u\,\}</math> <math>\mbox{(3)}</math> | + | :<math>L(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)-y^{\top}u\,\}</math> <math>\mbox{(3)}\,</math> |
72行目: | 72行目: | ||
− | :<math>\varphi{(x)}=\sup_{y}L(x,y), \quad\quad \psi{(y)}=\inf_{x}L(x,y)</math> <math>\mbox{(4)}</math> | + | :<math>\varphi{(x)}=\sup_{y}L(x,y), \quad\quad \psi{(y)}=\inf_{x}L(x,y)</math> <math>\mbox{(4)}\,</math> |
79行目: | 79行目: | ||
− | <math>\mbox{(iii)}</math> <math>\mbox{inf}_{x}\varphi{(x)}=\mbox{inf}_{x}\,[\,\mbox{sup}_{y}L(x,y)\,] | + | <math>\mbox{(iii)}\,</math> <math>\mbox{inf}_{x}\varphi{(x)}=\mbox{inf}_{x}\,[\,\mbox{sup}_{y}L(x,y)\,] |
\ge\mbox{sup}_{y}\,[\,\mbox{inf}_{x}L(x,y)\,]=\mbox{sup}_{y}\psi{(y)}</math> | \ge\mbox{sup}_{y}\,[\,\mbox{inf}_{x}L(x,y)\,]=\mbox{sup}_{y}\psi{(y)}</math> | ||
− | <math>\mbox{(iv)}</math> <math>\varphi{(\bar{x})}=\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}=\psi{(\bar{y})} | + | <math>\mbox{(iv)}\,</math> <math>\varphi{(\bar{x})}=\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}=\psi{(\bar{y})} |
\Longleftrightarrow (\bar{x},\bar{y})</math> が<math>L\,</math>の鞍点 | \Longleftrightarrow (\bar{x},\bar{y})</math> が<math>L\,</math>の鞍点 | ||
103行目: | 103行目: | ||
:<math> | :<math> | ||
− | \begin{array}{ | + | \begin{array}{rll} |
F(x) &:= & (g_{1}(x),\ldots,g_{k}(x),h_{1}(x),\ldots,h_{l}(x))^{\top}\\ | F(x) &:= & (g_{1}(x),\ldots,g_{k}(x),h_{1}(x),\ldots,h_{l}(x))^{\top}\\ | ||
\theta(w) &:= & \sup_{\lambda,\mu}\{\lambda^{\top}w_{1}+\mu^{\top}w_{2}\,|\, | \theta(w) &:= & \sup_{\lambda,\mu}\{\lambda^{\top}w_{1}+\mu^{\top}w_{2}\,|\, | ||
116行目: | 116行目: | ||
:<math>L(x,\lambda,\mu)=f_{0}(x)+\sum_{i=1}^{k}\lambda_{i}g_{i}(x) | :<math>L(x,\lambda,\mu)=f_{0}(x)+\sum_{i=1}^{k}\lambda_{i}g_{i}(x) | ||
− | +\sum_{j=1}^{l}\mu_{j}h_{j}(x)</math> <math>\mbox{(5)}</math> | + | +\sum_{j=1}^{l}\mu_{j}h_{j}(x)</math> <math>\mbox{(5)}\,</math> |
143行目: | 143行目: | ||
− | が成立すれば,<math>\bar{x}</math> と <math>(\bar{\lambda},\bar{\mu})</math> はそれぞれ問題<math>(\mbox{P}_{L})</math>と<math>(\mbox{D}_{L})</math>の最適解となり最適値が一致する.これを[[ラグランジュの双対性]] (Lagrangian duality) と呼ぶ.(iv)により,<math>\mbox{min}_{x}\mbox{sup}_{y}L(x,y)=\mbox{max}_{y}\mbox{inf}_{x}L(x,y)</math> が成立すれば,この双対性が保証される.この等式に対する十分条件を述べた定理を[[ミニマックス定理]](minimax theorem) と呼ぶ [1]. 逆に,主問題の目的関数 <math>f_0\, </math> と制約関数 <math>g_i\, </math> がすべて凸で,<math>h_j\, </math> がすべてアフィン関数であるような[[凸計画問題]] (convex programming problem) においては,適当な条件のもとで,問題<math>(\mbox{P}_{L})</math>の最適解 <math>\bar{x}</math> に対して,<math>\bar{\lambda}\ge{0}</math> であるようなラグランジュ乗数 <math>(\bar{\lambda},\bar{\mu})</math> が存在して,<math>(\bar{x},\bar{\lambda},\bar{\mu})</math> がラグランジュ関数 <math>L\, </math> の鞍点となる.さらに,次のような[[拡張ラグランジュ関数]](augmented Lagrangian function) に基づく双対性も考えられている [2, 3, 4]. | + | が成立すれば,<math>\bar{x}</math> と <math>(\bar{\lambda},\bar{\mu})</math> はそれぞれ問題<math>(\mbox{P}_{L})\,</math>と<math>(\mbox{D}_{L})\,</math>の最適解となり最適値が一致する.これを[[ラグランジュの双対性]] (Lagrangian duality) と呼ぶ.(iv) により,<math>\mbox{min}_{x}\mbox{sup}_{y}L(x,y)=\mbox{max}_{y}\mbox{inf}_{x}L(x,y)\,</math> が成立すれば,この双対性が保証される.この等式に対する十分条件を述べた定理を[[ミニマックス定理]](minimax theorem) と呼ぶ [1]. 逆に,主問題の目的関数 <math>f_0\, </math> と制約関数 <math>g_i\, </math> がすべて凸で,<math>h_j\, </math> がすべてアフィン関数であるような[[凸計画問題]] (convex programming problem) においては,適当な条件のもとで,問題<math>(\mbox{P}_{L})\,</math>の最適解 <math>\bar{x}</math> に対して,<math>\bar{\lambda}\ge{0}</math> であるようなラグランジュ乗数 <math>(\bar{\lambda},\bar{\mu})</math> が存在して,<math>(\bar{x},\bar{\lambda},\bar{\mu})</math> がラグランジュ関数 <math>L\, </math> の鞍点となる.さらに,次のような[[拡張ラグランジュ関数]](augmented Lagrangian function) に基づく双対性も考えられている [2, 3, 4]. |
149行目: | 149行目: | ||
− | ただし,<math>r\, </math> は正定数,<math>\sigma:\mathbf{R}^{m}\rightarrow\bar{\mathbf{R}}</math> は <math>u\neq{0}</math> に対して <math>0=\sigma{(0)}<\sigma{(u)}</math> を満足する下半連続な真凸関数である.関数 <math>\sigma</math> の例としては <math>\sigma{(u)}:=\frac{1}{2}\|u\|^{2}</math> などがある. | + | ただし,<math>r\, </math> は正定数,<math>\sigma:\mathbf{R}^{m}\rightarrow\bar{\mathbf{R}}\,</math> は <math>u\neq{0}\,</math> に対して <math>0=\sigma{(0)}<\sigma{(u)}\,</math> を満足する下半連続な真凸関数である.関数 <math>\sigma\,</math> の例としては <math>\sigma{(u)}:=\frac{1}{2}\|u\|^{2}\,</math> などがある. |
2007年6月29日 (金) 19:02時点における版
【そうついせいりろん (duality theory)】
双対性理論 (duality theory)は,非線形計画のみならず線形計画,多目的計画,離散凸解析などの分野で主問題とその双対問題の関係,および集合や関数の双対関係を説明する重要な基礎理論である [1, 2, 3, 4].
「双対」 (dual) と「共役」 (conjugate) は元々同義語として用いられ,数学の関数解析の分野では,ノルム空間 上の有界線形汎関数の全体を の双対空間 (dual space) または共役空間 (conjugate space) といい, と表して, における の値を または と書く. が 次元実ユークリッド空間 の場合は, と は同一視でき, となり, は と の内積 となる.以下に述べる事柄は,無限次元空間に対しても拡張できるが,ここでは簡単のため に限定して説明する.
空間 上で定義された拡張実数値関数 に対して(ただし,),
で定義される関数 を の共役関数 (conjugate function) という.共役関数 に対して,さらにその共役関数 を考えることができるが, が下半連続な真凸関数のときには, は に一致する. に を対応させる写像をルジャンドル-フェンシェル変換 (Legendre-Fenchel transform) と呼ぶ.
下半連続な真凸関数 に対して,関数 と をそれぞれ と で定義し,次の問題(P)と(D)を主問題 (primal problem) とその双対問題 (dual problem) と呼ぶ [1, 4].
また,
とおくと, と は凸集合となる.このとき,以下が成立する.
または
ここで, は の内部を表す.(i)を弱双対定理 (weak duality theorem),(ii)を双対定理 (duality theorem) と呼び, が満たされるとき,主問題(P)と双対問題(D)の間に双対性 (duality) が成立するという.(i)により, なら主問題(P)は実行可能解を持たないが, となる と が存在すれば,それぞれ(P)と(D)の最適解となり,強い意味の双対性が成立する.一方, となるとき,主問題と双対問題の間に双対性のギャップ (duality gap) が存在するという.
主問題(P)において,(ただし, と は下半連続な真凸関数で, , )とすると,となり [4],主問題(P)と双対問題(D)はそれぞれ
となる.ここで または が成立すれば,(ii)により主問題 (1) と双対問題 (2) の間に双対性が成立する.(ただし,dom は拡張実数値関数の実効定義域を表す.)これをフェンシェルの双対性 (Fenchel duality) と呼んでいる.通常は,簡略化して と を零ベクトル, を恒等写像として,新たに を凸関数 と凹関数 の差で表し,主問題 に対して, をフェンシェルの双対問題 (Fenchel dual problem) と呼ぶ.ただし,.双対性は のとき成立する.また, とすると,(1) と(2) は線形計画の主問題と双対問題となる [2, 4].
次に,ラグランジュ関数 (Lagrangian function) を
と定義する.が成立しているので,
となる.通常,すなわち,すべての と に対してが成り立つとき, を関数 の 上での鞍点 (saddle point) と呼ぶ.(4) により,
がの鞍点
が成立する.(iv) を鞍点定理 (saddle point theorem) と呼ぶ.非線形計画問題
(ただし, は で定義された実数値関数,) に対して,
とおくと,(3) によりに対する問題(NLP)のラグランジュ関数は
となる.この をラグランジュ乗数 (Lagrange multipliers) と呼ぶ.このとき,主問題と双対問題は
となり,一般に問題をラグランジュの双対問題 (Lagrangian dual problem)と呼ぶ.鞍点定理により, の鞍点 が存在すれば,つまり
が成立すれば, と はそれぞれ問題との最適解となり最適値が一致する.これをラグランジュの双対性 (Lagrangian duality) と呼ぶ.(iv) により, が成立すれば,この双対性が保証される.この等式に対する十分条件を述べた定理をミニマックス定理(minimax theorem) と呼ぶ [1]. 逆に,主問題の目的関数 と制約関数 がすべて凸で, がすべてアフィン関数であるような凸計画問題 (convex programming problem) においては,適当な条件のもとで,問題の最適解 に対して, であるようなラグランジュ乗数 が存在して, がラグランジュ関数 の鞍点となる.さらに,次のような拡張ラグランジュ関数(augmented Lagrangian function) に基づく双対性も考えられている [2, 3, 4].
ただし, は正定数, は に対して を満足する下半連続な真凸関数である.関数 の例としては などがある.
参考文献
[1] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
[2] 福島雅夫,『非線形最適化の基礎』, 朝倉書店, 2001.
[3] 今野浩, 山下浩,『非線形計画法』, 日科技連, 1978.
[4] R.T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer, Berlin, 1998.