「ゾーン」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
("ゾーン" を保護しました。 [edit=sysop:move=sysop])
 
2行目: 2行目:
  
 
<math>d \,</math>次元の<math>n \,</math>個の超平面のアレンジメントにおいて, 新たに1つ超平面<math>h \,</math>を加え,  <math>h \,</math>と交わる各セルのフェイスの集合をゾーンと呼ぶ.  ゾーン定理は, アレンジメントの基本定理であり, 種々の応用がある. 代数曲面のアレンジメントにおいても, ほぼ超平面の場合と同じゾーン定理が成立する. そのように一般化した際には, ゾーンは超曲面アレンジメントの1つのセルとみなせる.
 
<math>d \,</math>次元の<math>n \,</math>個の超平面のアレンジメントにおいて, 新たに1つ超平面<math>h \,</math>を加え,  <math>h \,</math>と交わる各セルのフェイスの集合をゾーンと呼ぶ.  ゾーン定理は, アレンジメントの基本定理であり, 種々の応用がある. 代数曲面のアレンジメントにおいても, ほぼ超平面の場合と同じゾーン定理が成立する. そのように一般化した際には, ゾーンは超曲面アレンジメントの1つのセルとみなせる.
 +
 +
[[Category:計算幾何|ぞーん]]

2008年11月11日 (火) 14:30時点における最新版

【ぞーん (zone)】

次元の個の超平面のアレンジメントにおいて, 新たに1つ超平面を加え, と交わる各セルのフェイスの集合をゾーンと呼ぶ. ゾーン定理は, アレンジメントの基本定理であり, 種々の応用がある. 代数曲面のアレンジメントにおいても, ほぼ超平面の場合と同じゾーン定理が成立する. そのように一般化した際には, ゾーンは超曲面アレンジメントの1つのセルとみなせる.