「安定分布」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
1行目: 1行目:
 
'''【 あんていぶんぷ (stable distribution) 】'''
 
'''【 あんていぶんぷ (stable distribution) 】'''
 
 
 確率変数列<math>X_{1}, X_{2}, \cdots</math>は独立で同一の分布<math>F</math>に従うとする.このとき,任意の<math>n</math>に対して,ある数<math>a_{n}, b_{n}</math>があり,
+
確率変数列<math>X_{1}, X_{2}, \cdots</math>は独立で同一の分布<math>F</math>に従うとする.このとき,任意の<math>n</math>に対して,ある数<math>a_{n}, b_{n}</math>があり,
 
<table align="center">
 
<table align="center">
 
<tr>
 
<tr>
8行目: 8行目:
 
</tr>
 
</tr>
 
</table>
 
</table>
ならば,<math>F</math>は安定(stable)であるという.ここに,<math>\cong</math>は分布が等しいことを表す.<math>F</math>が安定ならば,<math>0 < \alpha \le 2</math>を満たすある<math>\alpha</math>に対して,<math>a_{n} = n^{\frac 1{\alpha}}</math>が成り立つ.このとき,<math>F</math>は<math>\alpha-</math>安定であるという.例えば,正規分布は<math>\alpha = 2</math>の安定分布であり,コーシー分布(Cauchy distribution)は<math>\alpha=1</math>の安定分布である.ここに,コーシー分布とは密度関数
+
ならば,<math>F</math>は安定(stable)であるという.ここに,<math>\cong</math>は分布が等しいことを表す.<math>F</math>が安定ならば,<math>0 < \alpha \le 2</math>を満たすある<math>\alpha</math>に対して,<math>a_{n} = n^{\frac 1{\alpha}}</math>が成り立つ.このとき,<math>F</math>は<math>\alpha-</math>安定であるという.例えば,[[正規分布]]は<math>\alpha = 2</math>の安定分布であり,コーシー分布(Cauchy distribution)は<math>\alpha=1</math>の安定分布である.ここに,コーシー分布とは[[密度関数]]
 
<table align="center">
 
<table align="center">
 
<tr>
 
<tr>

2007年9月20日 (木) 15:44時点における版

【 あんていぶんぷ (stable distribution) 】

確率変数列構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X_{1}, X_{2}, \cdots} は独立で同一の分布構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F} に従うとする.このとき,任意の構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle n} に対して,ある数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle a_{n}, b_{n}} があり,

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X_{1} + \cdots + X_{n} \cong a_{n} X_{1} + b_{n}}

ならば,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F} は安定(stable)であるという.ここに,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \cong} は分布が等しいことを表す.構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F} が安定ならば,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle 0 < \alpha \le 2} を満たすある構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha} に対して,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle a_{n} = n^{\frac 1{\alpha}}} が成り立つ.このとき,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha-} 安定であるという.例えば,正規分布構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha = 2} の安定分布であり,コーシー分布(Cauchy distribution)は構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha=1} の安定分布である.ここに,コーシー分布とは密度関数

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(x) = \frac {a} {\pi ((x-b)^{2} + a^{2})}, \qquad -\infty < x < \infty}

をもつ分布である.ここに,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle a} は正の定数,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle b} は実数の定数である.