「安定分布」の版間の差分
Tetsuyatominaga (トーク | 投稿記録) (新しいページ: ''''【あんていぶんぷ (stable distribution) 】''' 確率変数列<math>X_{1}, X_{2}, \ldots</math>は独立で同一の分布<math>F</math>に従うとする.こ...') |
Tetsuyatominaga (トーク | 投稿記録) |
||
2行目: | 2行目: | ||
確率変数列<math>X_{1}, X_{2}, \ldots</math>は独立で同一の分布<math>F</math>に従うとする.このとき,任意の<math>n</math>に対して,ある数<math>a_{n}, b_{n}</math>があり, | 確率変数列<math>X_{1}, X_{2}, \ldots</math>は独立で同一の分布<math>F</math>に従うとする.このとき,任意の<math>n</math>に対して,ある数<math>a_{n}, b_{n}</math>があり, | ||
− | + | <table align="center"> | |
− | + | <tr> | |
− | + | <td><math>X_{1} + \ldots + X_{n} \cong a_{n} X_{1} + b_{n}</math> | |
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
ならば,<math>F</math>は安定(stable)であるという.ここに,<math>\cong</math>は分布が等しいことを表す.<math>F</math>が安定ならば,<math>0 < \alpha \le 2</math>を満たすある<math>\alpha</math>に対して,<math>a_{n} = n^{\frac 1{\alpha}}</math>が成り立つ.このとき,<math>F</math>は<math>\alpha</math>-安定であるという.例えば,正規分布は<math>\alpha=2</math>の安定分布であり,コーシー分布(Cauchy distribution)は<math>\alpha=1</math>の安定分布である.ここに,コーシー分布とは密度関数 | ならば,<math>F</math>は安定(stable)であるという.ここに,<math>\cong</math>は分布が等しいことを表す.<math>F</math>が安定ならば,<math>0 < \alpha \le 2</math>を満たすある<math>\alpha</math>に対して,<math>a_{n} = n^{\frac 1{\alpha}}</math>が成り立つ.このとき,<math>F</math>は<math>\alpha</math>-安定であるという.例えば,正規分布は<math>\alpha=2</math>の安定分布であり,コーシー分布(Cauchy distribution)は<math>\alpha=1</math>の安定分布である.ここに,コーシー分布とは密度関数 | ||
− | + | <table align="center"> | |
− | + | <tr> | |
− | + | <td><math>f(x) = \frac {a} {\pi ((x-b)^{2} + a^{2})}, \qquad -\infty < x < \infty</math> | |
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
をもつ分布である.ここに,<math>a</math>は正の定数,<math>b</math>は実数の定数である. | をもつ分布である.ここに,<math>a</math>は正の定数,<math>b</math>は実数の定数である. |
2007年8月9日 (木) 00:41時点における版
【あんていぶんぷ (stable distribution) 】
確率変数列構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X_{1}, X_{2}, \ldots} は独立で同一の分布構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F} に従うとする.このとき,任意の構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle n} に対して,ある数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle a_{n}, b_{n}} があり,
ならば,は安定(stable)であるという.ここに,は分布が等しいことを表す.が安定ならば,を満たすあるに対して,が成り立つ.このとき,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F} は-安定であるという.例えば,正規分布は構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha=2} の安定分布であり,コーシー分布(Cauchy distribution)は構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha=1} の安定分布である.ここに,コーシー分布とは密度関数
構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(x) = \frac {a} {\pi ((x-b)^{2} + a^{2})}, \qquad -\infty < x < \infty} |
をもつ分布である.ここに,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle a} は正の定数,構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle b} は実数の定数である.