「積率母関数」の版間の差分
ナビゲーションに移動
検索に移動
(新しいページ: ''''【せきりつぼかんすう (moment generating function)】''' 確率分布関数 $F(x)$ をもつ分布, または確率変数 $X$, に対して, 実数 $\theta$ をパ...') |
|||
1行目: | 1行目: | ||
'''【せきりつぼかんすう (moment generating function)】''' | '''【せきりつぼかんすう (moment generating function)】''' | ||
− | 確率分布関数 | + | 確率分布関数 <math>F(x) \,</math> をもつ分布, または確率変数 <math>X \,</math>, に対して, 実数 <math>\theta \,</math> をパラメータとする関数 <math>\phi(\theta)=\mathrm{E}(\mathrm{e}^{\theta X})=\int \mathrm{e}^{\theta x} \mathrm{d}F(x) \,</math> を積率母関数と呼ぶ. 積率母関数が存在するためには, 任意の次数のモーメントが存在しなければならないが, よく使われるほとんどの分布は積率母関数をもつ. 積率母関数が存在する場合には, <math>\theta \,</math> に形式的に <math>\mbox{i}t \,</math> (<math>\mbox{i} \,</math>は虚数単位)を代入することで特性関数が得られる. |
2007年7月14日 (土) 02:22時点における版
【せきりつぼかんすう (moment generating function)】
確率分布関数 をもつ分布, または確率変数 , に対して, 実数 をパラメータとする関数 を積率母関数と呼ぶ. 積率母関数が存在するためには, 任意の次数のモーメントが存在しなければならないが, よく使われるほとんどの分布は積率母関数をもつ. 積率母関数が存在する場合には, に形式的に (は虚数単位)を代入することで特性関数が得られる.