「《モンテカルロ法》」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
3行目: 3行目:
 
 システムの特性値などを推定するために, 適当なモデルと乱数を使って実験し, 大数の法則や中心極限定理などを利用して推測を行う方法のこと. システムに確率的な変動が内在する場合だけでなく, 確定的な問題を解くためにも使われる.  
 
 システムの特性値などを推定するために, 適当なモデルと乱数を使って実験し, 大数の法則や中心極限定理などを利用して推測を行う方法のこと. システムに確率的な変動が内在する場合だけでなく, 確定的な問題を解くためにも使われる.  
  
 [[モンテカルロ法]]の原理を簡単な例で示そう. 推定したい特性値を$\theta$とし, これは既知の分布関数$F(y)$を持つ確率変数$Y$の関数$g(Y)$の平均値に等しいものとすれば,  
+
 [[モンテカルロ法]]の原理を簡単な例で示そう. 推定したい特性値を <math>\theta \,</math>とし, これは既知の分布関数 <math>F(y) \,</math>を持つ確率変数 <math>Y \,</math>の関数 <math>g(Y) \,</math>の平均値に等しいものとすれば,  
  
  
12行目: 12行目:
  
  
と書ける. ただし, $h(u)=g(F^{-1}(u))$である. そこで, 区間[0,1]上の一様乱数$U_1, U_2, \cdots, U_N$を発生し, 算術平均
+
と書ける. ただし, <math>h(u)=g(F^{-1}(u)) \,</math>である. そこで, 区間[0,1]上の一様乱数 <math>U_1, U_2, \cdots, U_N \,</math>を発生し, 算術平均
  
  
20行目: 20行目:
  
  
を$\theta$の推定値とすることが考えられる. $A_1(N)$は$\theta$の不偏推定量であり, 分散は
 
  
 +
を<math>\theta \,</math>の推定値とすることが考えられる. <math>A_1(N) \,</math>は<math>\theta \,</math>の不偏推定量であり, 分散は
  
 
:<math>
 
:<math>
29行目: 29行目:
  
  
となる. したがって, 推定量$A_1(N)$に含まれる誤差の標準偏差は$\sigma/\sqrt N $であり, 精度を十進で1桁上げるためには, サンプル数$N$を10倍に増やさなければならない. このように, モンテカルロ法の収束は遅いので, これを改善するための方法が種々提案されており, [[分散減少法]]と総称されている. ただし, これらは$1/\sqrt N$というオーダーを改善するものではなく, 比例係数を小さくするための工夫である.  
+
となる. したがって, 推定量 <math>A_1(N) \,</math>に含まれる誤差の標準偏差は <math>\sigma/\sqrt N \,</math>であり, 精度を十進で1桁上げるためには, サンプル数 <math>N \,</math>を10倍に増やさなければならない. このように, モンテカルロ法の収束は遅いので, これを改善するための方法が種々提案されており, [[分散減少法]]と総称されている. ただし, これらは <math>1/\sqrt N \,</math>というオーダーを改善するものではなく, 比例係数を小さくするための工夫である.  
  
 
[[[重点サンプリング]]]
 
[[[重点サンプリング]]]
  
 積分区間から一様にサンプルをとるのではなく, 重要と考えられる部分($h(x)$の絶対値が大きい部分)により多くの重みをおく密度関数$w(x)$に従う乱数$X_1,\cdots,$\quad $X_N$を発生し,  
+
 積分区間から一様にサンプルをとるのではなく, 重要と考えられる部分(<math>h(x) \,</math>の絶対値が大きい部分)により多くの重みをおく密度関数<math>w(x) \,</math>に従う乱数<math>X_1,\cdots, \ \ X_N \,</math>を発生し,  
  
  
41行目: 41行目:
  
  
$\theta$を推定する. $w(x)$$\left| h(x) \right|$に比例するように選べれば分散は最小となるので, なるべくそれに近くなるように工夫する.  
+
<math>\theta \,</math>を推定する. <math>w(x) \,</math><math>\left| h(x) \right| \,</math>に比例するように選べれば分散は最小となるので, なるべくそれに近くなるように工夫する.  
 +
  
 
[[[制御変量法]]]
 
[[[制御変量法]]]
  
 $\theta$に対するひとつの不偏推定量を$Y$とする. $Y$と相関があって平均値$\zeta$が既知の確率変数$Z$のことを, $Y$の制御変量という. $\alpha$を定数として
+
 <math>\theta \,</math>に対するひとつの不偏推定量を<math>Y \,</math>とする. <math>Y \,</math>と相関があって平均値<math>\zeta \,</math>が既知の確率変数<math>Z \,</math>のことを, <math>Y \,</math>の制御変量という. <math>\alpha \,</math>を定数として
  
  
53行目: 54行目:
  
  
と定義すれば, $Y_\alpha$$\theta$の不偏推定量となり, その分散は$\alpha^* = {\mbox{\rm Cov}}(Y, Z)/V(Z)$のとき最小となり, 最小値は
+
と定義すれば, <math>Y_\alpha \,</math><math>\theta \,</math>の不偏推定量となり, その分散は<math>\alpha^* = \mathrm{Cov}(Y, Z)/V(Z) \,</math>のとき最小となり, 最小値は
  
  
61行目: 62行目:
  
  
である. ここで$\rho$$Y$$Z$の相関係数であるから, $Y$と相関の強い制御変量を選ぶほど効果的である.  
+
である. ここで<math>\rho \,</math><math>Y \,</math><math>Z \,</math>の相関係数であるから, <math>Y \,</math>と相関の強い制御変量を選ぶほど効果的である.  
  
 定積分の例では, $h(u)$に近い関数$h_0(u)$で, その積分の値$\zeta$が正確に計算できるものを選び,  
+
 定積分の例では, <math>h(u) \,</math>に近い関数<math>h_0(u) \,</math>で, その積分の値<math>\zeta \,</math>が正確に計算できるものを選び,  
  
  
75行目: 76行目:
 
[[[負相関変量法]]]
 
[[[負相関変量法]]]
  
 $\theta$の不偏推定量$Y$と平均値が同じで負の相関を持つ変量$Z$を利用して, $W=(Y+Z)/2$$\theta$の推定量とする. この分散は, $Y$に対して2回独立にサンプルをとって平均する場合の分散より小さくなる. 定積分の例では, もし$h(u)$が単調な関数ならば, $Y=h(U),\;\;\;Z=h(1-U)$とするとよい.  
+
 <math>\theta \,</math>の不偏推定量<math>Y \,</math>と平均値が同じで負の相関を持つ変量<math>Z \,</math>を利用して, <math>W=(Y+Z)/2 \,</math><math>\theta \,</math>の推定量とする. この分散は, <math>Y \,</math>に対して2回独立にサンプルをとって平均する場合の分散より小さくなる. 定積分の例では, もし<math>h(u) \,</math>が単調な関数ならば, <math>Y=h(U),\;\;\;Z=h(1-U) \,</math>とするとよい.  
  
 
[[[共通乱数法]]]
 
[[[共通乱数法]]]
  
 二つの特性値$\theta,\phi$をそれぞれ確率変数$X,Y$に関するモンテカルロ実験によって推定し, 比較したいものとし, $\theta=E[X], \phi=E[Y]$とする.  
+
 二つの特性値<math>\theta,\phi \,</math>をそれぞれ確率変数<math>X,Y \,</math>に関するモンテカルロ実験によって推定し, 比較したいものとし, <math>\theta=E[X], \phi=E[Y] \,</math>とする.  
  
 
:<math>
 
:<math>
86行目: 87行目:
  
  
であるから, ${\mbox{\rm Cov}}(X,Y)$が大きいほど推定の精度が良くなる. $X$$Y$の分布関数をそれぞれ$F,G$とし, $X$$Y$を逆関数法で作るものとする. このとき, $X$$Y$用に別々の一様乱数列を使う代りに, ひとつの乱数列$\{U\}$を使って, \noindent$X=F^{-1}(U), Y=G^{-1}(U)$とすれば, ${\mbox{\rm Cov}}(X,Y)$が最大となる. これが共通乱数法の原理である.  
+
であるから, <math>{\mathrm{Cov}}(X,Y) \,</math>が大きいほど推定の精度が良くなる. <math>X \,</math><math>Y \,</math>の分布関数をそれぞれ<math>F,G \,</math>とし, <math>X \,</math><math>Y \,</math>を逆関数法で作るものとする. このとき, <math>X \,</math><math>Y \,</math>用に別々の一様乱数列を使う代りに, ひとつの乱数列<math>\{U\} \,</math>を使って, <math>X=F^{-1}(U), Y=G^{-1}(U) \,</math>とすれば, <math>\mathrm{Cov}(X,Y) \,</math>が最大となる. これが共通乱数法の原理である.  
  
  

2007年7月12日 (木) 10:46時点における版

【もんてかるろほう (Monte Carlo method) 】

 システムの特性値などを推定するために, 適当なモデルと乱数を使って実験し, 大数の法則や中心極限定理などを利用して推測を行う方法のこと. システムに確率的な変動が内在する場合だけでなく, 確定的な問題を解くためにも使われる.

 モンテカルロ法の原理を簡単な例で示そう. 推定したい特性値を 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} とし, これは既知の分布関数 を持つ確率変数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} の関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle g(Y) \,} の平均値に等しいものとすれば,


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta = E[g(Y)]=\int_{-\infty}^\infty g(y)\mathrm{d}F(y) = \int_0^1 h(u) \mathrm{d}u, \, }


と書ける. ただし, である. そこで, 区間[0,1]上の一様乱数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle U_1, U_2, \cdots, U_N \,} を発生し, 算術平均


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A_1(N) = \sum_{i=1}^N h(U_i)/N \, }


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} の推定値とすることが考えられる. 構文解析に失敗 (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A_{1}(N)\,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} の不偏推定量であり, 分散は

構文解析に失敗 (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V(A_{1}(N))={\frac {\sigma ^{2}}{N}},\ \ \ \ \ \sigma ^{2}=\int _{0}^{1}h^{2}(x)\mathrm {d} x-\theta ^{2}\,}


となる. したがって, 推定量 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A_1(N) \,} に含まれる誤差の標準偏差は 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \sigma/\sqrt N \,} であり, 精度を十進で1桁上げるためには, サンプル数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle N \,} を10倍に増やさなければならない. このように, モンテカルロ法の収束は遅いので, これを改善するための方法が種々提案されており, 分散減少法と総称されている. ただし, これらは 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle 1/\sqrt N \,} というオーダーを改善するものではなく, 比例係数を小さくするための工夫である.

重点サンプリング

 積分区間から一様にサンプルをとるのではなく, 重要と考えられる部分(構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle h(x) \,} の絶対値が大きい部分)により多くの重みをおく密度関数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle w(x) \,} に従う乱数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X_1,\cdots, \ \ X_N \,} を発生し,


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A_2(N) = \frac 1 N \sum_{i=1}^N \frac{h(X_i)}{w(X_i)} \, }


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} を推定する. 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle w(x) \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \left| h(x) \right| \,} に比例するように選べれば分散は最小となるので, なるべくそれに近くなるように工夫する.


制御変量法

 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} に対するひとつの不偏推定量を構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} とする. 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} と相関があって平均値構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \zeta \,} が既知の確率変数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Z \,} のことを, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} の制御変量という. 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha \,} を定数として


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y_\alpha = Y-\alpha(Z-\zeta) \, }


と定義すれば, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y_\alpha \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} の不偏推定量となり, その分散は構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha^* = \mathrm{Cov}(Y, Z)/V(Z) \,} のとき最小となり, 最小値は


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle V(Y_{\alpha^*})=(1-\rho^2)V(Y) \, }


である. ここで構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Z \,} の相関係数であるから, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} と相関の強い制御変量を選ぶほど効果的である.

 定積分の例では, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle h(u) \,} に近い関数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle h_0(u) \,} で, その積分の値構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \zeta \,} が正確に計算できるものを選び,


構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y_\alpha = h(u)-\alpha(h_0(u)-\zeta) \, }


に対して単純な一様サンプリングを適用する.

負相関変量法

 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} の不偏推定量構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} と平均値が同じで負の相関を持つ変量構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Z \,} を利用して, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle W=(Y+Z)/2 \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta \,} の推定量とする. この分散は, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} に対して2回独立にサンプルをとって平均する場合の分散より小さくなる. 定積分の例では, もし構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle h(u) \,} が単調な関数ならば, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y=h(U),\;\;\;Z=h(1-U) \,} とするとよい.

共通乱数法

 二つの特性値構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta,\phi \,} をそれぞれ確率変数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X,Y \,} に関するモンテカルロ実験によって推定し, 比較したいものとし, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \theta=E[X], \phi=E[Y] \,} とする.

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle V(X-Y)=V(X)+V(Y)-2 \mathrm{Cov}(X,Y) \, }


であるから, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle {\mathrm{Cov}}(X,Y) \,} が大きいほど推定の精度が良くなる. 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} の分布関数をそれぞれ構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F,G \,} とし, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} を逆関数法で作るものとする. このとき, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X \,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle Y \,} 用に別々の一様乱数列を使う代りに, ひとつの乱数列構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \{U\} \,} を使って, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X=F^{-1}(U), Y=G^{-1}(U) \,} とすれば, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathrm{Cov}(X,Y) \,} が最大となる. これが共通乱数法の原理である.



参考文献

[1] 伏見正則, 『確率的方法とシミュレーション』(岩波講座 応用数学), 岩波書店, 1994.

[2] G. S. Fishman, Monte Carlo-Concepts, Algorithms, and Applications, Springer, 1996.

[3] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 2nd. ed., McGraw-Hill, 1991.