「劣勾配」の版間の差分
ナビゲーションに移動
検索に移動
Albeit-Kun (トーク | 投稿記録) |
|||
(他の1人の利用者による、間の1版が非表示) | |||
10行目: | 10行目: | ||
真凸関数はその実効定義域 <math>\mbox{dom} \, f := \{ x \, | \, f(x) < \infty \}\,</math> の任意の相対的内点において, 少なくとも1つの劣勾配をもつ. 特に, 凸関数 <math>f\,</math> が点 <math>x\,</math> において微分可能ならば, <math>f\,</math> の <math>x\,</math> における劣勾配は唯一存在し, 通常の勾配 <math>\nabla f(x)\,</math> に等しい. | 真凸関数はその実効定義域 <math>\mbox{dom} \, f := \{ x \, | \, f(x) < \infty \}\,</math> の任意の相対的内点において, 少なくとも1つの劣勾配をもつ. 特に, 凸関数 <math>f\,</math> が点 <math>x\,</math> において微分可能ならば, <math>f\,</math> の <math>x\,</math> における劣勾配は唯一存在し, 通常の勾配 <math>\nabla f(x)\,</math> に等しい. | ||
+ | |||
+ | [[Category:非線形計画|れつこうばい]] |
2008年11月14日 (金) 09:43時点における最新版
【れつこうばい (subgradient)】
真凸関数 に対して, 次式を満足するベクトル を の における劣勾配といい, 劣勾配全体の集合を と表す.
真凸関数はその実効定義域 の任意の相対的内点において, 少なくとも1つの劣勾配をもつ. 特に, 凸関数 が点 において微分可能ならば, の における劣勾配は唯一存在し, 通常の勾配 に等しい.