「劣勾配」の版間の差分
(新しいページ: ''''【れつこうばい (subgradient)】''' 真凸関数 $f: {\bf R}^n \to (-\infty,+\infty)$ に対して, 次式を満足するベクトル $\xi \in {\bf R}^n$ を $f$ の ...') |
Albeit-Kun (トーク | 投稿記録) |
||
| (4人の利用者による、間の5版が非表示) | |||
| 1行目: | 1行目: | ||
'''【れつこうばい (subgradient)】''' | '''【れつこうばい (subgradient)】''' | ||
| − | 真凸関数 | + | 真凸関数 <math>f: {\mathbf R}^n \to (-\infty,+\infty)\,</math> に対して, 次式を満足するベクトル <math>\xi \in {\mathbf R}^n\,</math> を <math>f\,</math> の <math>x\,</math> における劣勾配といい, 劣勾配全体の集合を <math>\partial f(x)\,</math> と表す. |
| − | + | ||
| − | f(y) \ge f(x) + \xi^{\top}(y-x) \quad\quad \forall \, y \in {\ | + | <center> |
| − | + | <math>f(y) \ge f(x) + \xi^{\top}(y-x) \quad\quad \forall \, y \in {\mathbf R}^n</math> | |
| + | </center> | ||
| − | 真凸関数はその実効定義域 | + | 真凸関数はその実効定義域 <math>\mbox{dom} \, f := \{ x \, | \, f(x) < \infty \}\,</math> の任意の相対的内点において, 少なくとも1つの劣勾配をもつ. 特に, 凸関数 <math>f\,</math> が点 <math>x\,</math> において微分可能ならば, <math>f\,</math> の <math>x\,</math> における劣勾配は唯一存在し, 通常の勾配 <math>\nabla f(x)\,</math> に等しい. |
| + | |||
| + | [[Category:非線形計画|れつこうばい]] | ||
2008年11月14日 (金) 09:43時点における最新版
【れつこうばい (subgradient)】
真凸関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f: {\mathbf R}^n \to (-\infty,+\infty)\,} に対して, 次式を満足するベクトル 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \xi \in {\mathbf R}^n\,} を 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f\,} の 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle x\,} における劣勾配といい, 劣勾配全体の集合を 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \partial f(x)\,} と表す.
構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(y) \ge f(x) + \xi^{\top}(y-x) \quad\quad \forall \, y \in {\mathbf R}^n}
真凸関数はその実効定義域 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{dom} \, f := \{ x \, | \, f(x) < \infty \}\,}
の任意の相対的内点において, 少なくとも1つの劣勾配をもつ. 特に, 凸関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f\,}
が点 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle x\,}
において微分可能ならば, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f\,}
の 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle x\,}
における劣勾配は唯一存在し, 通常の勾配 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \nabla f(x)\,}
に等しい.