「楕円体」の版間の差分
ナビゲーションに移動
検索に移動
細 ("楕円体" を保護しました。 [edit=sysop:move=sysop]) |
Albeit-Kun (トーク | 投稿記録) |
||
13行目: | 13行目: | ||
と表される集合が楕円体である. ここで, <math>x_* \,</math> は 楕円体 <math>E \,</math> の中心と呼ばれる. <math>B = J J^{\top} \,</math> と分解されるとき,<math>E = \{x_* + J y \mid \|y\| \leq 1\} \,</math>と表される. したがって, 楕円体 <math>E \,</math> は単位球をアフィン変換 <math>y \mapsto x_* + J y \,</math>により写した像である. | と表される集合が楕円体である. ここで, <math>x_* \,</math> は 楕円体 <math>E \,</math> の中心と呼ばれる. <math>B = J J^{\top} \,</math> と分解されるとき,<math>E = \{x_* + J y \mid \|y\| \leq 1\} \,</math>と表される. したがって, 楕円体 <math>E \,</math> は単位球をアフィン変換 <math>y \mapsto x_* + J y \,</math>により写した像である. | ||
+ | |||
+ | [[Category:線形計画|だえんたい]] |
2008年11月12日 (水) 13:17時点における最新版
【だえんたい (ellipsoid)】
楕円体は, 2次元空間における楕円の概念を, 次元空間において一般化したものである. 1つのベクトル および 正定値対称行列 を用いて,
と表される集合が楕円体である. ここで, は 楕円体 の中心と呼ばれる. と分解されるとき,と表される. したがって, 楕円体 は単位球をアフィン変換 により写した像である.