「最大マッチング最小被覆定理」の版間の差分
ナビゲーションに移動
検索に移動
Albeit-Kun (トーク | 投稿記録) |
|||
| (他の1人の利用者による、間の1版が非表示) | |||
| 21行目: | 21行目: | ||
という定理. ケーニグ(König)の定理, またはケーニグ・エゲルヴァーリ(König-Egerváry)の定理とも呼ばれる. | という定理. ケーニグ(König)の定理, またはケーニグ・エゲルヴァーリ(König-Egerváry)の定理とも呼ばれる. | ||
| + | |||
| + | [[Category:グラフ・ネットワーク|さいだいまっちんぐさいしょうひふくていり]] | ||
2008年11月9日 (日) 17:57時点における最新版
【さいだいまっちんぐさいしょうひふくていり (maximum-matching minimum-cover theorem)】
2部グラフ 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle G = (V, A) \,} において, 最大マッチングの枝数と最小被覆の点数は等しい, すなわち
|
構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \max\{|M| \mid M \subseteq A } は のマッチング |
| 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle = \min\{|U| \mid U \subseteq V \,} は の被覆 |
という定理. ケーニグ(König)の定理, またはケーニグ・エゲルヴァーリ(König-Egerváry)の定理とも呼ばれる.