「共役関数」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
 
(他の1人の利用者による、間の1版が非表示)
12行目: 12行目:
  
 
共役関数 <math>f^* \,</math> に対して, さらにその共役関数 <math>f^{**} \,</math> を考えることができるが, <math>f \,</math> が下半連続な真凸関数のときには, <math>f^{**} \,</math> は <math>f \,</math> に一致する.  共役関数は数理計画の双対理論において重要な役割を果たす.
 
共役関数 <math>f^* \,</math> に対して, さらにその共役関数 <math>f^{**} \,</math> を考えることができるが, <math>f \,</math> が下半連続な真凸関数のときには, <math>f^{**} \,</math> は <math>f \,</math> に一致する.  共役関数は数理計画の双対理論において重要な役割を果たす.
 +
 +
[[Category:非線形計画|きょうやくかんすう]]

2008年11月7日 (金) 16:13時点における最新版

【きょうやくかんすう (conjugate function)】

真凸関数 に対して, 次式で定義される真凸関数 のこと.



共役関数 に対して, さらにその共役関数 を考えることができるが, が下半連続な真凸関数のときには, に一致する. 共役関数は数理計画の双対理論において重要な役割を果たす.