「安定分布」の版間の差分
ナビゲーションに移動
検索に移動
Albeit-Kun (トーク | 投稿記録) |
|||
(他の1人の利用者による、間の1版が非表示) | |||
1行目: | 1行目: | ||
'''【 あんていぶんぷ (stable distribution) 】''' | '''【 あんていぶんぷ (stable distribution) 】''' | ||
− | + | 確率変数列<math>X_{1}, X_{2}, \cdots</math>は独立で同一の分布<math>F</math>に従うとする.このとき,任意の<math>n</math>に対して,ある数<math>a_{n}, b_{n}</math>があり, | |
<table align="center"> | <table align="center"> | ||
<tr> | <tr> | ||
8行目: | 8行目: | ||
</tr> | </tr> | ||
</table> | </table> | ||
− | ならば,<math>F</math>は安定(stable)であるという.ここに,<math>\cong</math>は分布が等しいことを表す.<math>F</math>が安定ならば,<math>0 < \alpha \le 2</math>を満たすある<math>\alpha</math>に対して,<math>a_{n} = n^{\frac 1{\alpha}}</math>が成り立つ.このとき,<math>F</math>は<math>\alpha-</math> | + | ならば,<math>F</math>は安定(stable)であるという.ここに,<math>\cong</math>は分布が等しいことを表す.<math>F</math>が安定ならば,<math>0 < \alpha \le 2</math>を満たすある<math>\alpha</math>に対して,<math>a_{n} = n^{\frac 1{\alpha}}</math>が成り立つ.このとき,<math>F</math>は<math>\alpha-</math>安定であるという.例えば,[[正規分布]]は<math>\alpha = 2</math>の安定分布であり,コーシー分布(Cauchy distribution)は<math>\alpha=1</math>の安定分布である.ここに,コーシー分布とは[[密度関数]] |
<table align="center"> | <table align="center"> | ||
<tr> | <tr> | ||
16行目: | 16行目: | ||
</table> | </table> | ||
をもつ分布である.ここに,<math>a</math>は正の定数,<math>b</math>は実数の定数である. | をもつ分布である.ここに,<math>a</math>は正の定数,<math>b</math>は実数の定数である. | ||
+ | |||
+ | [[category:待ち行列|あんていぶんぷ]] |