拡散過程のソースを表示
←
拡散過程
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、以下のグループに属する利用者のみが実行できます:
登録利用者
。
このページは編集や他の操作ができないように保護されています。
このページのソースの閲覧やコピーができます。
'''【かくさんかてい (diffusion process)】''' <math>\{B(t)\}_{t \ge 0} \,</math> をブラウン運動として, 確率微分方程式 <center><math>\mathrm{d} D(t)= \mu(D(t),t)\,\mathrm{d} t + \,</math> <math>\sigma(D(t),t)\, \mathrm{d} B(t) \,</math> </center> によって与えられる確率過程<math>\{D(t)\}_{t \ge 0} \,</math>のこと. <math>\mu(x,t) \,</math>, <math>\sigma(x,t) \,</math> をそれぞれドリフト関数, 拡散関数と呼ぶ. 拡散過程は連続な標本路をもつ強マルコフ過程で, その生成作用素はフォッカー・プランク方程式と呼ばれる拡散方程式 <center> <math>\partial f(x,t)/\partial t = -\partial [\mu(x,t)\,f(x,t)] / \partial x + \frac{1}{2} \partial^2 [\sigma^2(x,t)\,f(x,t)] / \partial x^2 \,</math> </center> によって与えられる. [[category:確率と確率過程|かくさんかてい]]
拡散過程
に戻る。
案内メニュー
個人用ツール
ログイン
名前空間
ページ
議論
変種
表示
閲覧
ソースを表示
履歴表示
その他
検索
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
ORWikiへのお問い合わせ
OR学会HP
OR学会アーカイブ集
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報