自己回帰和分移動平均モデルのソースを表示
←
自己回帰和分移動平均モデル
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、以下のグループに属する利用者のみが実行できます:
登録利用者
。
このページは編集や他の操作ができないように保護されています。
このページのソースの閲覧やコピーができます。
'''【じこかいきわぶんいどうへいきんもでる (autoregressive integrated moving average (ARIMA) model)】''' <math>y_{t} \,</math> を非定常過程とし,<math>\varepsilon_{t} \,</math> を<math>\mbox{E}(\varepsilon_{t})=0 \,</math>,<math>\mbox{V}(\varepsilon_{t})=\sigma^{2} \,</math>,<math>\mbox{E}(\varepsilon_{t}\varepsilon_{s})=0 \,</math> <math>(t \ne s) \,</math>のホワイトノイズとする.<math>L \,</math> をラグ演算子 <math>L^{i}y_{t}=y_{t-i} \,</math>,<math>L^{i}\varepsilon_{t}=\varepsilon_{t-i} \,</math>(<math>i=1,2,\cdots \,</math>),<math>\phi(L) \,</math>, <math>\theta(L) \,</math> を <math>\textstyle \phi(L) \equiv 1-\sum_{i=1}^{p}\phi_{i}L^{i} \,</math>,<math>\textstyle \theta(L) \equiv 1+\sum_{i=1}^{p} \theta_{i}L^{i} \,</math>とする.<math>d \,</math> を自然数として, <math>y_{t} \,</math> の <math>d \,</math> 階階差 <math>(1-L)^{d}y_{t} \,</math> が定常な<math>\mbox{ARMA}(p,q) \,</math> モデルで表現できるとき, モデル <math>\phi(L)(1-L)^{d}y_{t} =\theta(L)\varepsilon_{t} \,</math>を次数 <math>(p,d,q) \,</math> の自己回帰和分移動平均モデルと呼び, <math>\mbox{ARIMA}(p,d,q) \,</math> モデルと略記する.
自己回帰和分移動平均モデル
に戻る。
案内メニュー
個人用ツール
ログイン
名前空間
ページ
議論
変種
表示
閲覧
ソースを表示
履歴表示
その他
検索
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
ORWikiへのお問い合わせ
OR学会HP
OR学会アーカイブ集
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報