鞍点定理のソースを表示
←
鞍点定理
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、以下のグループに属する利用者のみが実行できます:
登録利用者
。
このページは編集や他の操作ができないように保護されています。
このページのソースの閲覧やコピーができます。
'''【あんてんていり (saddle point theorem)】''' 2変数関数の鞍点の存在性と関連する諸条件を述べた定理. 集合 $X\times Y$ 上で定義された拡張実数値関数 $F$ に対して, 点 $(\bar{x},\bar{y})$ が \[ F(x,\bar{y})\ge{F(\bar{x},\bar{y})}\ge{F(\bar{x},y)}, \quad \forall (x,y) \in X\times Y \] を満足するとき, $(\bar{x},\bar{y})$ を $F$ の $X\times{Y}$ 上での鞍点という. 関数 $F$ が非線形計画問題のラグランジュ関数の場合には, 双対性理論に密接に関係する.
鞍点定理
に戻る。
案内メニュー
個人用ツール
ログイン
名前空間
ページ
議論
変種
表示
閲覧
ソースを表示
履歴表示
その他
検索
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
ORWikiへのお問い合わせ
OR学会HP
OR学会アーカイブ集
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報