デンプスター・シェファーの証拠理論
【でんぷすたーしぇふぁーのしょうこりろん (Dempster-Shafer theory of evidence)】
全体集合 の部分集合に確率を割り当てることにより, 確率における部分的な無知を表現する理論体系である. 部分集合に確率を割り当てる基本割当関数を 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle m\,} とすると, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle m(\emptyset)=0\,} , 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle m(B) \geq 0\,} , , が成立する. 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle m\,} のもとで, belief 関数(下界確率) と plausibility 関数(上界確率) 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle \mbox{Pl}(A)=\sum_{B \cap A \neq \emptyset} m(B)\,} が定義でき, 部分的無知を含む確信度付きの証拠に基づいた推論や意思決定に応用されている.