ゾーン定理

提供: ORWiki
2007年7月20日 (金) 11:19時点におけるOrsjwiki (トーク | 投稿記録)による版 ("ゾーン定理" を保護しました。 [edit=sysop:move=sysop])
ナビゲーションに移動 検索に移動

【ぞーんていり (zone theorem)】

ゾーン定理とは, 「次元空間内の個の超平面から成るアレンジメントにおいて, 1つの超平面のゾーンのフェイスの総数は構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathrm{O}(n^{d-1}) \,} である」というもので, アレンジメントの基本定理である. その応用は多く, 例えば 次元の構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle n \,} 超平面のアレンジメントのセルの集合を 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathcal{C} \,} , 各セルのファセットの数を構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle d(c) \,} としたとき, が成り立つ. 2次元の場合には, このような関係から複数のセルの辺の数を評価することができる.