リンドレーの方程式

提供: ORWiki
2007年7月9日 (月) 16:39時点における122.17.2.240 (トーク)による版 (新しいページ: ''''【りんどれーのほうていしき (Lindley's equation)】''' 客の到着が再生過程にしたがう GI/G/1 モデルにおいて, 到着間隔分布とサービ...')
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

【りんどれーのほうていしき (Lindley's equation)】

客の到着が再生過程にしたがう GI/G/1 モデルにおいて, 到着間隔分布とサービス時間分布をそれぞれ $F(t)$, $H(t)$ と表すとき, 先着順サービスでの待ち時間の定常分布 $W(t)$ に関する次の積分方程式をリンドレーの方程式という. %ただし, $C(t)$ は``サービス時間$-$到着間隔を表す分布関数である.

%\[ W(t) = \left\{ \begin{array}{ll} \displaystyle\int^{\infty}_{0-} C(t-x) \mbox{\rm d} W(x) & (t \geq 0) \\ 0 & (t < 0) \end{array} \right. \]

ただし, $C(t)=\int^{\infty}_{x=0} H(t+x) \mbox{\rm d} F(x)

           \ \ \ -\infty < t < +\infty $

である.