「積分幾何学」の版間の差分
ナビゲーションに移動
検索に移動
細 ("積分幾何学" を保護しました。 [edit=sysop:move=sysop]) |
|||
2行目: | 2行目: | ||
"ビュッフォンの針"のように図形に関係した確率を幾何確率といい, これらの理論的な部分は, 積分幾何学を基礎にしている. 積分幾何学の基礎概念とは合同変換によって不変な測度(積分)を求めることにあり, 対象が点, 直線, 一般的な図形等でそれらの集合の不変な測度がそれぞれ得られる. その測度(積分)に関係して, 直線についてはクロフトン (Crofton) による, 一般的な図形についてはブラシュケ (Blaschke) による, きれいな主公式が存在する. | "ビュッフォンの針"のように図形に関係した確率を幾何確率といい, これらの理論的な部分は, 積分幾何学を基礎にしている. 積分幾何学の基礎概念とは合同変換によって不変な測度(積分)を求めることにあり, 対象が点, 直線, 一般的な図形等でそれらの集合の不変な測度がそれぞれ得られる. その測度(積分)に関係して, 直線についてはクロフトン (Crofton) による, 一般的な図形についてはブラシュケ (Blaschke) による, きれいな主公式が存在する. | ||
+ | |||
+ | 詳しくは[[《積分幾何学》|基礎編:積分幾何学]]を参照. |
2007年8月9日 (木) 00:00時点における版
【せきぶんきかがく (integral geometry)】
"ビュッフォンの針"のように図形に関係した確率を幾何確率といい, これらの理論的な部分は, 積分幾何学を基礎にしている. 積分幾何学の基礎概念とは合同変換によって不変な測度(積分)を求めることにあり, 対象が点, 直線, 一般的な図形等でそれらの集合の不変な測度がそれぞれ得られる. その測度(積分)に関係して, 直線についてはクロフトン (Crofton) による, 一般的な図形についてはブラシュケ (Blaschke) による, きれいな主公式が存在する.
詳しくは基礎編:積分幾何学を参照.