「再生定理」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
7行目: 7行目:
 
\,</math>
 
\,</math>
  
また, 生起間隔分布が格子間隔$\delta$の格子型分布の場合には
+
また, 生起間隔分布が格子間隔<math>\delta\,</math>の格子型分布の場合には
  
 
<math>
 
<math>

2007年7月15日 (日) 18:32時点における版

【さいせいていり (renewal theorem)】

事象の平均生起間隔が 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mu \,} の再生過程における再生関数を 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle m(t) \,} で表すと, 生起間隔分布が格子型でない場合は,

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \lim_{t\rightarrow\infty} \frac{m(t+h)-m(t)}{h} = \frac{1}{\mu}, \,}

また, 生起間隔分布が格子間隔構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \delta\,} の格子型分布の場合には

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \lim_{n\rightarrow\infty} \frac{m((n+1)\delta)-m(n\delta)}{\delta} = \frac{1}{\mu} \,}

がそれぞれ成立する. これらを再生定理と呼ぶ.