「線形行列不等式」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
(新しいページ: ''''【せんけいぎょうれつふとうしき (linear matrix inequality)】''' 実対称行列 $A_0,\ldots,A_m$ が与えられたときに, \[ A_0 + \sum_{i=1}^m x_i A_i...')
 
1行目: 1行目:
 
'''【せんけいぎょうれつふとうしき (linear matrix inequality)】'''
 
'''【せんけいぎょうれつふとうしき (linear matrix inequality)】'''
  
実対称行列 $A_0,\ldots,A_m$ が与えられたときに,
+
実対称行列 <math>A_0,\ldots,A_m \,</math> が与えられたときに,
\[
+
 
 +
<math>
 
   A_0 + \sum_{i=1}^m x_i A_i
 
   A_0 + \sum_{i=1}^m x_i A_i
\]
+
\,</math>
が(半)正定値になるようなベクトル $x\in {\bf R}^m$ を見つける問題のこと.制御理論で現れる.半正定値計画とほぼ同値であり, 内点法を用いて効率よく解を見つけることができる.
+
 
 +
が(半)正定値になるようなベクトル <math>x\in \mathbf{R}^m \,</math> を見つける問題のこと.制御理論で現れる.半正定値計画とほぼ同値であり, 内点法を用いて効率よく解を見つけることができる.

2007年7月14日 (土) 02:27時点における版

【せんけいぎょうれつふとうしき (linear matrix inequality)】

実対称行列 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A_0,\ldots,A_m \,} が与えられたときに,

構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A_0 + \sum_{i=1}^m x_i A_i \,}

が(半)正定値になるようなベクトル 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle x\in \mathbf{R}^m \,} を見つける問題のこと.制御理論で現れる.半正定値計画とほぼ同値であり, 内点法を用いて効率よく解を見つけることができる.