「リー・ロントンの近似式」の版間の差分
ナビゲーションに移動
検索に移動
細 ("リー・ロントンの近似式" を保護しました。 [edit=sysop:move=sysop]) |
Albeit-Kun (トーク | 投稿記録) |
||
9行目: | 9行目: | ||
で与えられる. ここで, E(<math>W_q^{{\rm M/M/}s}\,</math>)は近似対象のM/G/<math>s\,</math>待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/<math>s\,</math>待ち行列の平均待ち時間. | で与えられる. ここで, E(<math>W_q^{{\rm M/M/}s}\,</math>)は近似対象のM/G/<math>s\,</math>待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/<math>s\,</math>待ち行列の平均待ち時間. | ||
+ | |||
+ | [[category:探索理論|りーろんとんのきんじしき]] |
2008年11月14日 (金) 09:27時点における最新版
【りーろんとんのきんじしき (Lee-Longton approximation)】
M/G/待ち行列の平均待ち時間E()に対する2モーメント近似式.1957~年にリーとロントンによって最初に導出された. サービス時間分布の変動係数をとすると
で与えられる. ここで, E()は近似対象のM/G/待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/待ち行列の平均待ち時間.