「リー・ロントンの近似式」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
("リー・ロントンの近似式" を保護しました。 [edit=sysop:move=sysop])
 
9行目: 9行目:
  
 
で与えられる. ここで, E(<math>W_q^{{\rm M/M/}s}\,</math>)は近似対象のM/G/<math>s\,</math>待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/<math>s\,</math>待ち行列の平均待ち時間.
 
で与えられる. ここで, E(<math>W_q^{{\rm M/M/}s}\,</math>)は近似対象のM/G/<math>s\,</math>待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/<math>s\,</math>待ち行列の平均待ち時間.
 +
 +
[[category:探索理論|りーろんとんのきんじしき]]

2008年11月14日 (金) 09:27時点における最新版

【りーろんとんのきんじしき (Lee-Longton approximation)】

M/G/待ち行列の平均待ち時間E()に対する2モーメント近似式.1957~年にリーとロントンによって最初に導出された. サービス時間分布の変動係数をとすると



で与えられる. ここで, E()は近似対象のM/G/待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/待ち行列の平均待ち時間.