「両的計画」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
("両的計画" を保護しました。 [edit=sysop:move=sysop])
1行目: 1行目:
 
'''【りょうてきけいかく (bynamic programming)】'''
 
'''【りょうてきけいかく (bynamic programming)】'''
  
いわゆる動的計画法を2元連立的に考えた逐次最適化法. 単調性「非減少性」に代わって両調性「非減少性または非増加性のいずれか」の下では, 部分最大化問題群と部分最小化問題群の両群を考えて, 両群の相隣る問題間の関係を両帰式としてを導く. これを逐次解いて, 最後に与問題の最適解を求める方法である.負値乗法型, 負値乗加法型などの評価系が両的計画で解ける. 確率系ではマルコフ両決定過程ともいう
+
いわゆる動的計画法を2元連立的に考えた逐次最適化法. 単調性「非減少性」に代わって両調性「非減少性または非増加性のいずれか」の下では, 部分最大化問題群と部分最小化問題群の両群を考えて, 両群の相隣る問題間の関係を両帰式としてを導く. これを逐次解いて, 最後に与問題の最適解を求める方法である.負値乗法型, 負値乗加法型などの評価系が両的計画で解ける. 確率系ではマルコフ両決定過程ともいう.
 +
 
 +
詳しくは[[《両的計画》|基礎編:両的計画]]を参照.

2007年8月8日 (水) 21:19時点における版

【りょうてきけいかく (bynamic programming)】

いわゆる動的計画法を2元連立的に考えた逐次最適化法. 単調性「非減少性」に代わって両調性「非減少性または非増加性のいずれか」の下では, 部分最大化問題群と部分最小化問題群の両群を考えて, 両群の相隣る問題間の関係を両帰式としてを導く. これを逐次解いて, 最後に与問題の最適解を求める方法である.負値乗法型, 負値乗加法型などの評価系が両的計画で解ける. 確率系ではマルコフ両決定過程ともいう.

詳しくは基礎編:両的計画を参照.