「ナップサック問題」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
2行目: 2行目:
  
 
重さが<math>a_i\,</math>の物品<math>i\,</math>をナップサックに詰めるとき, 重量制限 <math>b\,</math> の下で価値 <math>c_i\,</math> の総和が最大になるものを選ぶという次の整数計画問題. <br>
 
重さが<math>a_i\,</math>の物品<math>i\,</math>をナップサックに詰めるとき, 重量制限 <math>b\,</math> の下で価値 <math>c_i\,</math> の総和が最大になるものを選ぶという次の整数計画問題. <br>
<table>
+
<table align = center>
 
   <tr><td>目的関数 </td> <td><math>\sum_{i=1}^{n} c_{i}x_{i} \to \,</math>最大化</td></tr>
 
   <tr><td>目的関数 </td> <td><math>\sum_{i=1}^{n} c_{i}x_{i} \to \,</math>最大化</td></tr>
 
   <tr><td>制約条件 </td> <td><math>\sum_{i=1}^{n} a_{i}x_{i} \leq b,x_i\,</math>:非負整数</td></tr>
 
   <tr><td>制約条件 </td> <td><math>\sum_{i=1}^{n} a_{i}x_{i} \leq b,x_i\,</math>:非負整数</td></tr>
 
</table>
 
</table>
 
NP困難であるが, 実際には大規模な問題でも最適に解くことができる. 板取り問題などの部分問題などにも広く利用されている.
 
NP困難であるが, 実際には大規模な問題でも最適に解くことができる. 板取り問題などの部分問題などにも広く利用されている.

2007年7月13日 (金) 13:43時点における版

【なっぷさっくもんだい (knapsack problem)】

重さがの物品をナップサックに詰めるとき, 重量制限 の下で価値 の総和が最大になるものを選ぶという次の整数計画問題.

目的関数  最大化
制約条件  :非負整数

NP困難であるが, 実際には大規模な問題でも最適に解くことができる. 板取り問題などの部分問題などにも広く利用されている.