「コルモゴロフの前進方程式」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
(新しいページ: ''''【こるもごろふのぜんしんほうていしき (Kolmogorov's forward equation)】''' $\{ X(t) \}$ を離散状態空間 ${\cal S}$ 上の連続時間マルコフ連...')
 
1行目: 1行目:
 
'''【こるもごろふのぜんしんほうていしき (Kolmogorov's forward equation)】'''
 
'''【こるもごろふのぜんしんほうていしき (Kolmogorov's forward equation)】'''
  
$\{ X(t) \}$ を離散状態空間 ${\cal S}$ 上の連続時間マルコフ連鎖とし, その推移確率を$p_{ij}(s,t)=\mbox{P}(X(t)=j|X(s)=i)$, 時点 $t$ での推移速度行列を $\mbox{\boldmath$Q$}(t)=(q_{ij}(t))$ とするとき, ある条件の下で $p_{ij}(s,t)$ が満たす次の微分方程式のこと.
+
<math>\{ X(t) \} \,</math> を離散状態空間 <math>\mathcal{S} \,</math> 上の連続時間マルコフ連鎖とし, その推移確率を<math>p_{ij}(s,t)=\mbox{P}(X(t)=j|X(s)=i) \,</math>, 時点 <math>t \,</math> での推移速度行列を <math>\mathbf{Q}(t)=(q_{ij}(t)) \,</math> とするとき, ある条件の下で <math>p_{ij}(s,t) \,</math> が満たす次の微分方程式のこと.
  
\[
+
<math>
 
   \frac{\partial p_{ij}(s,t)}{\partial t}
 
   \frac{\partial p_{ij}(s,t)}{\partial t}
   = \sum_{k \in {\cal S}} p_{ik}(s,t)q_{kj}(t).
+
   = \sum_{k \in \mathcal{S}} p_{ik}(s,t)q_{kj}(t).
\]
+
</math>

2007年7月12日 (木) 23:04時点における版

【こるもごろふのぜんしんほうていしき (Kolmogorov's forward equation)】

を離散状態空間 上の連続時間マルコフ連鎖とし, その推移確率を, 時点 での推移速度行列を とするとき, ある条件の下で が満たす次の微分方程式のこと.