「離散分離定理」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
1行目: 1行目:
 
'''【りさんぶんりていり (discrete separation theorem)】'''
 
'''【りさんぶんりていり (discrete separation theorem)】'''
  
一般に, あるクラスに属する関数<math>f: {\mathbf Z}^{n} \to {\mathbf Z} \cup \{ +\infty \}\,</math> と<math>g: {\mathbf Z}^{n} \to {\mathbf Z} \cup \{ -\infty \}\,</math>が <math>f(x) \geq g(x)\,</math> <math>(\forall \ x \in {\mathbf Z}^{n})\,</math>を満たすならば, ある<math>\alpha \in {\mathbf Z}\,</math>, <math>p \in {\mathbf Z}^{n}\,</math>が存在して <math> f(x) \geq \alpha + \langle p, x \rangle  \geq g(x)  \qquad  (\forall \ x \in {\mathbf Z}^{n})\,</math> が成り立つ,という形の定理を離散分離定理という. ここで, <math>\langle p, x \rangle = \sum_{i=1}^{n}p_{i}x_{i}\,</math>であり, <math>p\,</math>が整数ベクトルに選べることが離散性の反映である.
+
一般に, あるクラスに属する関数<math>f: {\mathbf Z}^{n} \to {\mathbf Z} \cup \{ +\infty \}\,</math> と<math>g: {\mathbf Z}^{n} \to {\mathbf Z} \cup \{ -\infty \}\,</math>が <math>f(x) \geq g(x)\,</math> <math>(\forall \ x \in {\mathbf Z}^{n})\,</math>を満たすならば, ある<math>\alpha \in {\mathbf Z}\,</math>, <math>p \in {\mathbf Z}^{n}\,</math>が存在して <math> f(x) \geq \alpha + \langle p, x \rangle  \geq g(x)  \qquad  (\forall \ x \in {\mathbf Z}^{n})\,</math> が成り立つ,という形の定理を離散分離定理という. ここで, <math>\textstyle \langle p, x \rangle = \sum_{i=1}^{n}p_{i}x_{i}\,</math>であり, <math>p\,</math>が整数ベクトルに選べることが離散性の反映である.

2007年7月17日 (火) 13:31時点における版

【りさんぶんりていり (discrete separation theorem)】

一般に, あるクラスに属する関数構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f: {\mathbf Z}^{n} \to {\mathbf Z} \cup \{ +\infty \}\,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle g: {\mathbf Z}^{n} \to {\mathbf Z} \cup \{ -\infty \}\,} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (\forall \ x \in {\mathbf Z}^{n})\,} を満たすならば, ある構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \alpha \in {\mathbf Z}\,} , 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p \in {\mathbf Z}^{n}\,} が存在して 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(x) \geq \alpha + \langle p, x \rangle \geq g(x) \qquad (\forall \ x \in {\mathbf Z}^{n})\,} が成り立つ,という形の定理を離散分離定理という. ここで, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle \langle p, x \rangle = \sum_{i=1}^{n}p_{i}x_{i}\,} であり, が整数ベクトルに選べることが離散性の反映である.