「ポテンシャル関数 (内点法の)」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
("ポテンシャル関数 (内点法の)" を保護しました。 [edit=sysop:move=sysop])
 
10行目: 10行目:
  
 
(<math>c^*\,</math>は主問題の最小値, <math>\rho\,</math>はパラメータ)で与えられる. カーマーカーが初めて導入した関数であり, 既与の<math>\rho > 0\,</math>に対して, 正領域内の許容解の点列<math>\{x^k\}\,</math>が<math>f(x^k) \rightarrow -\infty\,</math> であるとき, その集積点はすべて最適解という性質をもつ.
 
(<math>c^*\,</math>は主問題の最小値, <math>\rho\,</math>はパラメータ)で与えられる. カーマーカーが初めて導入した関数であり, 既与の<math>\rho > 0\,</math>に対して, 正領域内の許容解の点列<math>\{x^k\}\,</math>が<math>f(x^k) \rightarrow -\infty\,</math> であるとき, その集積点はすべて最適解という性質をもつ.
 +
 +
[[Category:線形計画|ぽてんしゃるかんすう]]

2008年11月13日 (木) 21:55時点における最新版

【ぽてんしゃるかんすう (potential function)】

標準形の線形計画問題「 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mbox{min. } \ c^{\top}x \ \mbox{s.t.} \ Ax = b, \ x \geq 0\,} (構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle A\,}行列, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle b \in {\mathbf R}^m\,} , )」 に対する内点法で用いられるポテンシャル関数は,



(構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle c^*\,} は主問題の最小値, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho\,} はパラメータ)で与えられる. カーマーカーが初めて導入した関数であり, 既与のに対して, 正領域内の許容解の点列構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \{x^k\}\,}構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle f(x^k) \rightarrow -\infty\,} であるとき, その集積点はすべて最適解という性質をもつ.