「2次割当問題」の版間の差分
ナビゲーションに移動
検索に移動
Albeit-Kun (トーク | 投稿記録) |
|||
(他の1人の利用者による、間の1版が非表示) | |||
2行目: | 2行目: | ||
目的関数が2次式となる割当問題のこと. 設置予定の工場<math>P_1, \ldots, P_n\,</math>とその場所候補<math>L_1, \ldots, L_n\,</math>が与えられており, 工場<math>P_i\,</math>, <math>P_k\,</math>間の輸送量が<math>q_{ik}\,</math>, 場所<math>L_j\,</math>, <math>L_{\ell}\,</math>間の距離が<math>d_{j \ell}\,</math>とするとき, 輸送の量と距離の積の総和を最小化する問題は, <math>P_i\,</math> を <math>L_j\,</math> に設置する際に1となる0-1変数 <math>x_{ij}\,</math> を導入すると, 割当問題の制約に対して目的関数は2次式<math>\textstyle \sum_{i,j,k,\ell = 1}^n q_{ik} d_{j \ell} x_{ij} x_{k \ell}\,</math>となる. 巡回セールスマン問題や施設配置問題などの多くのNP困難な問題が, 2次割当問題に帰着できる. | 目的関数が2次式となる割当問題のこと. 設置予定の工場<math>P_1, \ldots, P_n\,</math>とその場所候補<math>L_1, \ldots, L_n\,</math>が与えられており, 工場<math>P_i\,</math>, <math>P_k\,</math>間の輸送量が<math>q_{ik}\,</math>, 場所<math>L_j\,</math>, <math>L_{\ell}\,</math>間の距離が<math>d_{j \ell}\,</math>とするとき, 輸送の量と距離の積の総和を最小化する問題は, <math>P_i\,</math> を <math>L_j\,</math> に設置する際に1となる0-1変数 <math>x_{ij}\,</math> を導入すると, 割当問題の制約に対して目的関数は2次式<math>\textstyle \sum_{i,j,k,\ell = 1}^n q_{ik} d_{j \ell} x_{ij} x_{k \ell}\,</math>となる. 巡回セールスマン問題や施設配置問題などの多くのNP困難な問題が, 2次割当問題に帰着できる. | ||
+ | |||
+ | [[Category:組合せ最適化|にじわりあてもんだい]] |
2008年11月5日 (水) 16:12時点における最新版
【にじわりあてもんだい (quadratic assignment problem (QAP))】
目的関数が2次式となる割当問題のこと. 設置予定の工場とその場所候補が与えられており, 工場, 間の輸送量が, 場所, 間の距離がとするとき, 輸送の量と距離の積の総和を最小化する問題は, を に設置する際に1となる0-1変数 を導入すると, 割当問題の制約に対して目的関数は2次式となる. 巡回セールスマン問題や施設配置問題などの多くのNP困難な問題が, 2次割当問題に帰着できる.