「拡張ラグランジュ関数」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
 
(2人の利用者による、間の3版が非表示)
3行目: 3行目:
 
関数 <math>f:\mathbf{R}^n\times{\mathbf{R}^m}\to [-\infty,+\infty] \,</math> に対して, ラグランジュ関数を拡張した, 次式で定義される2変数関数 <math>\bar{L}:\mathbf{R}^n\times{\mathbf{R}^m}\to [-\infty,+\infty] \,</math> のこと.  
 
関数 <math>f:\mathbf{R}^n\times{\mathbf{R}^m}\to [-\infty,+\infty] \,</math> に対して, ラグランジュ関数を拡張した, 次式で定義される2変数関数 <math>\bar{L}:\mathbf{R}^n\times{\mathbf{R}^m}\to [-\infty,+\infty] \,</math> のこと.  
  
<!-- \bar{L}(x,y):=\inf_{u\in{\mbox{{\bf R}}^m}}\{\, f(x,u)+r\sigma{(u)}-y^{T}u\,\} -->
 
  
 +
<center>
 
<math>
 
<math>
 
\bar{L}(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)+r\sigma{(u)}-y^{\top}u\,\}
 
\bar{L}(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)+r\sigma{(u)}-y^{\top}u\,\}
 
\,</math>
 
\,</math>
 +
</center>
  
  
 
ただし, <math>r \,</math> は正定数, <math>\sigma:\mathbf{R}^{m}\rightarrow\bar{\mathbf{R}} \,</math> は <math>u\neq{0} \,</math> に対して <math>0=\sigma{(0)}<\sigma{(u)} \,</math> を満足する下半連続な真凸関数(例えば, <math>\sigma{(u)}:=1/2\|u\|^{2} \,</math> など). 関数 <math>\bar{L} \,</math> を用いると, 非凸計画問題に対して双対性のギャップを解消できる場合がある.
 
ただし, <math>r \,</math> は正定数, <math>\sigma:\mathbf{R}^{m}\rightarrow\bar{\mathbf{R}} \,</math> は <math>u\neq{0} \,</math> に対して <math>0=\sigma{(0)}<\sigma{(u)} \,</math> を満足する下半連続な真凸関数(例えば, <math>\sigma{(u)}:=1/2\|u\|^{2} \,</math> など). 関数 <math>\bar{L} \,</math> を用いると, 非凸計画問題に対して双対性のギャップを解消できる場合がある.
 +
 +
[[Category:非線形計画|かくちょうらぐらんじゅかんすう]]

2008年11月7日 (金) 15:04時点における最新版

【かくちょうらぐらんじゅかんすう (augmented Lagrangian function)】

関数 に対して, ラグランジュ関数を拡張した, 次式で定義される2変数関数 のこと.



ただし, は正定数, に対して を満足する下半連続な真凸関数(例えば, など). 関数 を用いると, 非凸計画問題に対して双対性のギャップを解消できる場合がある.