「レベル (計算幾何における)」の版間の差分
Albeit-Kun (トーク | 投稿記録) |
|||
(他の1人の利用者による、間の1版が非表示) | |||
2行目: | 2行目: | ||
<math>d\,</math>次元超平面アレンジメントにおいて, <math>x_d\,</math>軸に平行な直線で貫いたときに下から <math>k\,</math>番目となる交点をもつフェイス全体の集合を, <math>k\,</math>-レベル, または単にレベルという. 2次元の場合, 高々<math>k\,</math>までのレベルのサイズは<math>{\rm O}(kn)\,</math>であり, <math>k\,</math>-レベルのサイズは<math>{\rm O}(\sqrt{k}n)\,</math>となる. 双対性より, これは平面の<math>n\,</math> 点を直線で等分割する方法の数が<math>{\rm O}(n^{1.5})\,</math>であることも意味する. <math>k\,</math>-レベルを<math>{\rm O}(\sqrt{k}n(\log n)^2)\,</math>時間で 求める平面走査法アルゴリズムが知られている. | <math>d\,</math>次元超平面アレンジメントにおいて, <math>x_d\,</math>軸に平行な直線で貫いたときに下から <math>k\,</math>番目となる交点をもつフェイス全体の集合を, <math>k\,</math>-レベル, または単にレベルという. 2次元の場合, 高々<math>k\,</math>までのレベルのサイズは<math>{\rm O}(kn)\,</math>であり, <math>k\,</math>-レベルのサイズは<math>{\rm O}(\sqrt{k}n)\,</math>となる. 双対性より, これは平面の<math>n\,</math> 点を直線で等分割する方法の数が<math>{\rm O}(n^{1.5})\,</math>であることも意味する. <math>k\,</math>-レベルを<math>{\rm O}(\sqrt{k}n(\log n)^2)\,</math>時間で 求める平面走査法アルゴリズムが知られている. | ||
+ | |||
+ | [[Category:計算幾何|れべる]] |
2008年11月14日 (金) 09:46時点における最新版
【れべる (level)】
構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle d\,} 次元超平面アレンジメントにおいて, 軸に平行な直線で貫いたときに下から 番目となる交点をもつフェイス全体の集合を, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle k\,} -レベル, または単にレベルという. 2次元の場合, 高々構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle k\,} までのレベルのサイズは構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle {\rm O}(kn)\,} であり, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle k\,} -レベルのサイズは構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle {\rm O}(\sqrt{k}n)\,} となる. 双対性より, これは平面の 点を直線で等分割する方法の数が構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle {\rm O}(n^{1.5})\,} であることも意味する. 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle k\,} -レベルを構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle {\rm O}(\sqrt{k}n(\log n)^2)\,} 時間で 求める平面走査法アルゴリズムが知られている.