「局所的最適解」の版間の差分
ナビゲーションに移動
検索に移動
(新しいページ: ''''【きょくしょてきさいてきかい (local optimal solution)】''' 数理計画問題: \[ \min. \ f(x) \quad \mbox{s.t.} \ x \in S \] において, 点 $x^* \in S...') |
Albeit-Kun (トーク | 投稿記録) |
||
| (3人の利用者による、間の4版が非表示) | |||
| 3行目: | 3行目: | ||
数理計画問題: | 数理計画問題: | ||
| − | + | <center> | |
| + | <math> | ||
\min. \ f(x) \quad \mbox{s.t.} \ x \in S | \min. \ f(x) \quad \mbox{s.t.} \ x \in S | ||
| − | \ | + | \,</math> |
| + | </center> | ||
| − | |||
| − | \ | + | において, 点 <math>x^* \in S\,</math> とその適当な近傍 <math>N(x^*)\,</math> に対して |
| + | |||
| + | |||
| + | <center> | ||
| + | <math> | ||
f(x^*) \le f(x) \quad \forall \ x \in S \cap N(x^*) | f(x^*) \le f(x) \quad \forall \ x \in S \cap N(x^*) | ||
| − | \ | + | \,</math> |
| + | </center> | ||
| + | |||
| + | |||
| + | が成り立つとき, <math>x^*\,</math> を局所的最適解という. 非凸計画問題においては通常多くの局所的最適解が存在し, 大域的最適解を見出すのは困難なことが多い. | ||
| − | + | [[Category:非線形計画|きょくしょてきさいてきかい]] | |
2008年11月7日 (金) 16:19時点における最新版
【きょくしょてきさいてきかい (local optimal solution)】
数理計画問題:
において, 点 とその適当な近傍 に対して
が成り立つとき, を局所的最適解という. 非凸計画問題においては通常多くの局所的最適解が存在し, 大域的最適解を見出すのは困難なことが多い.