「ラグランジュの双対性」の版間の差分
ナビゲーションに移動
検索に移動
Albeit-Kun (トーク | 投稿記録) |
|||
(2人の利用者による、間の2版が非表示) | |||
4行目: | 4行目: | ||
− | + | <center><math>\begin{array}{cll} | |
− | \begin{array}{cll} | + | ( \mbox{P}_{L} ) & \mbox{min.} & \displaystyle \sup_{\lambda\ge{0},\mu} L(x,\lambda,\mu) \\ |
− | \mbox{ | + | & \mbox{s.t.} & \displaystyle x\in{\mathbf R}^n \\ |
− | & \mbox{s.t.} & \displaystyle | + | ( \mbox{D}_{L} ) & \mbox{max.} & \displaystyle \inf_{x} L(x,\lambda,\mu) \\ |
− | \mbox{ | + | & \mbox{s.t.} & \displaystyle 0\le\lambda\in {\mathbf R}^{k}, \quad |
− | & \mbox{s.t.} & \displaystyle | + | \mu\in{\mathbf R}^{l} |
− | + | \end{array}</math> | |
− | \end{array} | + | </center> |
− | |||
<math>L\,</math> の鞍点 <math>(\bar{x},\bar{\lambda},\bar{\mu})\,</math> が存在すれば, <math>\bar{x}\,</math> と <math>(\bar{\lambda},\bar{\mu})\,</math> はそれぞれ問題(<math>P_{L}\,</math>)と(<math>D_{L}\,</math>)の最適解となり最適値が一致する. | <math>L\,</math> の鞍点 <math>(\bar{x},\bar{\lambda},\bar{\mu})\,</math> が存在すれば, <math>\bar{x}\,</math> と <math>(\bar{\lambda},\bar{\mu})\,</math> はそれぞれ問題(<math>P_{L}\,</math>)と(<math>D_{L}\,</math>)の最適解となり最適値が一致する. | ||
+ | |||
+ | [[Category:非線形計画|らぐらんじゅのそうついせい]] |
2008年11月14日 (金) 09:19時点における最新版
【らぐらんじゅのそうついせい (Lagrange duality)】
ラグランジュ関数 に対して定義された以下の主問題とその双対問題の間に成立する双対性のこと.
の鞍点 が存在すれば, と はそれぞれ問題()と()の最適解となり最適値が一致する.