「リー・ロントンの近似式」の版間の差分
ナビゲーションに移動
検索に移動
(新しいページ: ''''【りーろんとんのきんじしき (Lee-Longton approximation)】''' M/G/$s$待ち行列の平均待ち時間E($W_q^{{\rm M/G/}s}$)に対する2モーメント近似...') |
Albeit-Kun (トーク | 投稿記録) |
||
(3人の利用者による、間の4版が非表示) | |||
1行目: | 1行目: | ||
'''【りーろんとんのきんじしき (Lee-Longton approximation)】''' | '''【りーろんとんのきんじしき (Lee-Longton approximation)】''' | ||
− | M/G/ | + | M/G/<math>s\,</math>待ち行列の平均待ち時間E(<math>W_q^{{\rm M/G/}s}\,</math>)に対する2モーメント近似式.1957~年にリーとロントンによって最初に導出された. サービス時間分布の変動係数を<math>c_s\,</math>とすると |
− | |||
− | |||
− | |||
− | |||
+ | <center><math>\mbox{E}(W_q^{{\rm M/G/}s}) \approx (1+c_s^2) \, \mbox{E}(W_q^{{\rm M/M/}s}) \, /2</math></center> | ||
− | で与えられる. ここで, E( | + | |
+ | |||
+ | で与えられる. ここで, E(<math>W_q^{{\rm M/M/}s}\,</math>)は近似対象のM/G/<math>s\,</math>待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/<math>s\,</math>待ち行列の平均待ち時間. | ||
+ | |||
+ | [[category:探索理論|りーろんとんのきんじしき]] |
2008年11月14日 (金) 09:27時点における最新版
【りーろんとんのきんじしき (Lee-Longton approximation)】
M/G/待ち行列の平均待ち時間E()に対する2モーメント近似式.1957~年にリーとロントンによって最初に導出された. サービス時間分布の変動係数をとすると
で与えられる. ここで, E()は近似対象のM/G/待ち行列のサービス時間分布を同じ平均をもつ指数分布に置き換えたM/M/待ち行列の平均待ち時間.