「離散凸解析」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
("離散凸解析" を保護しました。 [edit=sysop:move=sysop])
2行目: 2行目:
  
 
離散的な集合(例えば整数格子点の集合)の上で定義された関数の構造を, 凸解析の視点とマトロイド理論の視点の両方から考察する方法論を, 離散凸解析と呼ぶ. より一般的には, 解析的な視点と組合せ論的な視点の両方から「組合せ論的な凸性」という構造を考察する方法論を指す. 離散最適化, システム解析, 数理経済学などへの応用がある.
 
離散的な集合(例えば整数格子点の集合)の上で定義された関数の構造を, 凸解析の視点とマトロイド理論の視点の両方から考察する方法論を, 離散凸解析と呼ぶ. より一般的には, 解析的な視点と組合せ論的な視点の両方から「組合せ論的な凸性」という構造を考察する方法論を指す. 離散最適化, システム解析, 数理経済学などへの応用がある.
 +
 +
詳しくは[[《離散凸解析》|基礎編:離散凸解析]]を参照.

2007年8月8日 (水) 21:02時点における版

【りさんとつかいせき (discrete convex analysis)】

離散的な集合(例えば整数格子点の集合)の上で定義された関数の構造を, 凸解析の視点とマトロイド理論の視点の両方から考察する方法論を, 離散凸解析と呼ぶ. より一般的には, 解析的な視点と組合せ論的な視点の両方から「組合せ論的な凸性」という構造を考察する方法論を指す. 離散最適化, システム解析, 数理経済学などへの応用がある.

詳しくは基礎編:離散凸解析を参照.