「多重積分の解法」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
3行目: 3行目:
 
多重積分を累次(繰り返し)積分で解くこと:  
 
多重積分を累次(繰り返し)積分で解くこと:  
  
 +
 +
<center>
 
<math>
 
<math>
 
\displaystyle{ \int_Df(x)\mbox{d}x =  }  
 
\displaystyle{ \int_Df(x)\mbox{d}x =  }  
10行目: 12行目:
 
   \mbox{d}x_N \cdots \mbox{d}x_2\mbox{d}x_1 }
 
   \mbox{d}x_N \cdots \mbox{d}x_2\mbox{d}x_1 }
 
\,</math>
 
\,</math>
 +
</center>
 +
  
 
は <math> f = f_N  \,</math> から始まる後向きの再帰(漸化)式
 
は <math> f = f_N  \,</math> から始まる後向きの再帰(漸化)式
  
 +
 +
<center>
 
<math>
 
<math>
 
\displaystyle{ f_{n-1}(x_{1}, \cdots , x_{n-1}) = }  
 
\displaystyle{ f_{n-1}(x_{1}, \cdots , x_{n-1}) = }  
18行目: 24行目:
 
   f_n(x_{1}, \cdots , x_{n})\mbox{d}x_n, \ 1 \le n \le N}
 
   f_n(x_{1}, \cdots , x_{n})\mbox{d}x_n, \ 1 \le n \le N}
 
\,</math>
 
\,</math>
 +
</center>
 +
  
 
を解くことに他ならない.
 
を解くことに他ならない.

2007年7月17日 (火) 15:51時点における版

【たじゅうせきぶんのかいほう (solution of multiple integral)】

多重積分を累次(繰り返し)積分で解くこと:



から始まる後向きの再帰(漸化)式



を解くことに他ならない.