「階数関数」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
1行目: 1行目:
 
'''【かいすうかんすう (rank function)】'''
 
'''【かいすうかんすう (rank function)】'''
  
独立集合族<math>\mathcal{I} \,</math>をもつ<math>N \,</math>上のマトロイド <math>\mathbf{M}=(N,\mathcal{I}) \,</math> において, <math>\rho(X)=\max\{|I|\mid I\subseteq X,\, I \in\mathcal{I}\} \,</math> で定められる関数 <math>\rho:2^N\to \mathbf{Z} \,</math> を階数関数という. 階数関数 <math>\rho \,</math> は次の (R0)--(R3) を満たしている: (R0) <math>\rho(\emptyset)=0 \,</math>, (R1) <math>\forall X\subseteq N \,</math>: <math>\rho(X)\leq |X| \,</math>, (R2) <math>X\subseteq Y \Rightarrow \rho(X)\leq\rho(Y) \,</math>, (R3) <math>\forall X,Y\subseteq N \,</math>: <math>\rho(X)+\rho(Y)\geq\rho(X\cap Y)+\rho(X\cup Y) \,</math>. 逆に, (R0)-(R3) を満たす関数 <math>\rho \,</math> によってマトロイドを定義することもできる.
+
独立集合族<math>\mathcal{I} \,</math>をもつ<math>N \,</math>上のマトロイド <math>\mathbf{M}=(N,\mathcal{I}) \,</math> において, <math>\rho(X)=\max\{|I|\mid I\subseteq X,\, I \in\mathcal{I}\} \,</math> で定められる関数 <math>\rho:2^N\to \mathbf{Z} \,</math> を階数関数という. 階数関数 <math>\rho \,</math> は次の (R0)--(R3) を満たしている:
 +
 
 +
(R0) <math>\rho(\emptyset)=0 \,</math>,
 +
 
 +
(R1) <math>\forall X\subseteq N \,</math>: <math>\rho(X)\leq |X| \,</math>,
 +
 
 +
(R2) <math>X\subseteq Y \Rightarrow \rho(X)\leq\rho(Y) \,</math>,
 +
 
 +
(R3) <math>\forall X,Y\subseteq N \,</math>: <math>\rho(X)+\rho(Y)\geq\rho(X\cap Y)+\rho(X\cup Y) \,</math>.
 +
 
 +
逆に, (R0)-(R3) を満たす関数 <math>\rho \,</math> によってマトロイドを定義することもできる.

2007年7月15日 (日) 03:15時点における版

【かいすうかんすう (rank function)】

独立集合族をもつ上のマトロイド において, で定められる関数 を階数関数という. 階数関数 は次の (R0)--(R3) を満たしている:

(R0) ,

(R1) : ,

(R2) ,

(R3) : .

逆に, (R0)-(R3) を満たす関数 によってマトロイドを定義することもできる.