「特性関数 (ゲーム理論の)」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
(新しいページ: '【とくせいかんすう (characteristic function)】 確率分布関数 $F(x)$ をもつ分布, あるいは確率変数 $X$に対して, $\phi(t)=\mathrm{E}(\mathrm{e}^{\...')
 
1行目: 1行目:
 
【とくせいかんすう (characteristic function)】
 
【とくせいかんすう (characteristic function)】
  
確率分布関数 $F(x)$ をもつ分布, あるいは確率変数 $X$に対して, $\phi(t)=\mathrm{E}(\mathrm{e}^{\mathrm{i}tX})=\int \mathrm{e}^{\mathrm{i}tx} \mathrm{d} F(x)$ で定義される関数. ただし, $t$ は実数パラメータ, $\mathrm{i}$ は虚数単位. 特性関数は確率分布関数と1対1で対応しており, また特性関数の $j$ 次の微分係数から $j$ 次モーメントを求めることができる. 確率変数の和の分布の導出や, 確率分布列の収束等の証明にも利用される.
+
確率分布関数 <math>F(x)\,</math> をもつ分布, あるいは確率変数 <math>X\,</math>に対して, <math>\phi(t)=\mathrm{E}(\mathrm{e}^{\mathrm{i}tX})=\int \mathrm{e}^{\mathrm{i}tx} \mathrm{d} F(x)\,</math> で定義される関数. ただし, <math>t\,</math> は実数パラメータ, <math>\mathrm{i}\,</math> は虚数単位. 特性関数は確率分布関数と1対1で対応しており, また特性関数の <math>j\,</math> 次の微分係数から <math>j\,</math> 次モーメントを求めることができる. 確率変数の和の分布の導出や, 確率分布列の収束等の証明にも利用される.

2007年7月13日 (金) 01:46時点における版

【とくせいかんすう (characteristic function)】

確率分布関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle F(x)\,} をもつ分布, あるいは確率変数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X\,} に対して, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \phi(t)=\mathrm{E}(\mathrm{e}^{\mathrm{i}tX})=\int \mathrm{e}^{\mathrm{i}tx} \mathrm{d} F(x)\,} で定義される関数. ただし, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle t\,} は実数パラメータ, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathrm{i}\,} は虚数単位. 特性関数は確率分布関数と1対1で対応しており, また特性関数の 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle j\,} 次の微分係数から 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle j\,} 次モーメントを求めることができる. 確率変数の和の分布の導出や, 確率分布列の収束等の証明にも利用される.