「階数関数」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
(新しいページ: ''''【かいすうかんすう (rank function)】''' 独立集合族$\cal I$をもつ$N$上のマトロイド ${\bf M}=(N,{\cal I})$ において, $\rho(X)=\max\{|I|\mid I\sub...')
 
1行目: 1行目:
 
'''【かいすうかんすう (rank function)】'''
 
'''【かいすうかんすう (rank function)】'''
  
独立集合族$\cal I$をもつ$N$上のマトロイド ${\bf M}=(N,{\cal I})$ において, $\rho(X)=\max\{|I|\mid I\subseteq X,\, I \in{\cal I}\}$ で定められる関数 $\rho:2^N\to{\bf Z}$ を階数関数という. 階数関数 $\rho$ は次の (R0)--(R3) を満たしている: (R0) $\rho(\emptyset)=0$, (R1) $\forall X\subseteq N$: $\rho(X)\leq |X|$, (R2) $X\subseteq Y \Rightarrow \rho(X)\leq\rho(Y)$, (R3) $\forall X,Y\subseteq N$: $\rho(X)+\rho(Y)\geq\rho(X\cap Y)+\rho(X\cup Y)$. 逆に, (R0)-(R3) を満たす関数 $\rho$ によってマトロイドを定義することもできる.
+
独立集合族<math>\mathcal{I} \,</math>をもつ<math>N \,</math>上のマトロイド <math>\mathbf{M}=(N,\mathcal{I}) \,</math> において, <math>\rho(X)=\max\{|I|\mid I\subseteq X,\, I \in\mathcal{I}\} \,</math> で定められる関数 <math>\rho:2^N\to \mathbf{Z} \,</math> を階数関数という. 階数関数 <math>\rho \,</math> は次の (R0)--(R3) を満たしている: (R0) <math>\rho(\emptyset)=0 \,</math>, (R1) <math>\forall X\subseteq N \,</math>: <math>\rho(X)\leq |X| \,</math>, (R2) <math>X\subseteq Y \Rightarrow \rho(X)\leq\rho(Y) \,</math>, (R3) <math>\forall X,Y\subseteq N \,</math>: <math>\rho(X)+\rho(Y)\geq\rho(X\cap Y)+\rho(X\cup Y) \,</math>. 逆に, (R0)-(R3) を満たす関数 <math>\rho \,</math> によってマトロイドを定義することもできる.

2007年7月11日 (水) 17:06時点における版

【かいすうかんすう (rank function)】

独立集合族構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathcal{I} \,} をもつ構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle N \,} 上のマトロイド 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \mathbf{M}=(N,\mathcal{I}) \,} において, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho(X)=\max\{|I|\mid I\subseteq X,\, I \in\mathcal{I}\} \,} で定められる関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho:2^N\to \mathbf{Z} \,} を階数関数という. 階数関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho \,} は次の (R0)--(R3) を満たしている: (R0) 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho(\emptyset)=0 \,} , (R1) 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \forall X\subseteq N \,} : 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho(X)\leq |X| \,} , (R2) 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle X\subseteq Y \Rightarrow \rho(X)\leq\rho(Y) \,} , (R3) 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \forall X,Y\subseteq N \,} : 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho(X)+\rho(Y)\geq\rho(X\cap Y)+\rho(X\cup Y) \,} . 逆に, (R0)-(R3) を満たす関数 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \rho \,} によってマトロイドを定義することもできる.