「ホーン節」の版間の差分
ナビゲーションに移動
検索に移動
細 ("ホーン節" を保護しました。 [edit=sysop:move=sysop]) |
Albeit-Kun (トーク | 投稿記録) |
||
2行目: | 2行目: | ||
リテラル(命題そのものか, またはその否定)が選言で結合された論理式を節と呼び, 正のリテラル(否定のついていない命題)を高々1つ含む節のことをホーン節と呼ぶ. Prolog などの多くの論理型プログラムはホーン節の集合として構成される. 任意の論理式は等価な節集合に変換できるが, 特にホーン節のみからなる節集合に対しての定理証明手続きは, 線形導出などの効率的な手続きが存在することが知られている. | リテラル(命題そのものか, またはその否定)が選言で結合された論理式を節と呼び, 正のリテラル(否定のついていない命題)を高々1つ含む節のことをホーン節と呼ぶ. Prolog などの多くの論理型プログラムはホーン節の集合として構成される. 任意の論理式は等価な節集合に変換できるが, 特にホーン節のみからなる節集合に対しての定理証明手続きは, 線形導出などの効率的な手続きが存在することが知られている. | ||
+ | |||
+ | [[category:近似・知能・感覚的手法|ほーんせつ]] |
2008年11月13日 (木) 21:52時点における最新版
【ほーんせつ (Horn clause)】
リテラル(命題そのものか, またはその否定)が選言で結合された論理式を節と呼び, 正のリテラル(否定のついていない命題)を高々1つ含む節のことをホーン節と呼ぶ. Prolog などの多くの論理型プログラムはホーン節の集合として構成される. 任意の論理式は等価な節集合に変換できるが, 特にホーン節のみからなる節集合に対しての定理証明手続きは, 線形導出などの効率的な手続きが存在することが知られている.