「ドロネー図」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
 
(他の1人の利用者による、間の1版が非表示)
2行目: 2行目:
 
   
 
   
 
2次元の点<math>p_i=(x_i,y_i)\,</math> <math>(i=1,\cdots,n)\,</math>に対して, 新たに<math>z\,</math>軸を考え,  3次元の点<math>(x_i,y_i,x_i^2+y_i^2)\,</math>の3次元の凸包の<math>z\,</math>軸に関する下側境界を<math>(x,y)\,</math>平面に正射影したものを, <math>p_i\,</math> <math>(i=1,\ldots,n)\,</math>のドロネー図という. ドロネー三角形分割ともいわれる. ボロノイ図は, ドロネー図の双対グラフである. ドロネー図は, 各三角形の外接円が他の点を内部に含まない三角形分割であり, 平面で最小角最大, 一般次元でも最大最小包含円最小など最適化基準を満たす.
 
2次元の点<math>p_i=(x_i,y_i)\,</math> <math>(i=1,\cdots,n)\,</math>に対して, 新たに<math>z\,</math>軸を考え,  3次元の点<math>(x_i,y_i,x_i^2+y_i^2)\,</math>の3次元の凸包の<math>z\,</math>軸に関する下側境界を<math>(x,y)\,</math>平面に正射影したものを, <math>p_i\,</math> <math>(i=1,\ldots,n)\,</math>のドロネー図という. ドロネー三角形分割ともいわれる. ボロノイ図は, ドロネー図の双対グラフである. ドロネー図は, 各三角形の外接円が他の点を内部に含まない三角形分割であり, 平面で最小角最大, 一般次元でも最大最小包含円最小など最適化基準を満たす.
 +
 +
[[Category:計算幾何|どろねーず]]

2008年11月13日 (木) 13:06時点における最新版

【どろねーず (Delaunay diagram)】

2次元の点構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p_i=(x_i,y_i)\,} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (i=1,\cdots,n)\,} に対して, 新たに構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle z\,} 軸を考え, 3次元の点構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (x_i,y_i,x_i^2+y_i^2)\,} の3次元の凸包の構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle z\,} 軸に関する下側境界を平面に正射影したものを, 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p_i\,} 構文解析に失敗 (MathML、ただし動作しない場合はSVGかPNGで代替(最新ブラウザーや補助ツールに推奨): サーバー「https://en.wikipedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle (i=1,\ldots,n)\,} のドロネー図という. ドロネー三角形分割ともいわれる. ボロノイ図は, ドロネー図の双対グラフである. ドロネー図は, 各三角形の外接円が他の点を内部に含まない三角形分割であり, 平面で最小角最大, 一般次元でも最大最小包含円最小など最適化基準を満たす.