「独立集合族」の版間の差分

提供: ORWiki
ナビゲーションに移動 検索に移動
(新しいページ: '【どくりつしゅうごうぞく (independent set family)】 有限集合 $N$ とその部分集合族 ${\cal I}$ が以下の (I0)--(I2) を満たすとき, ${\bf M}=(N,{...')
 
 
(3人の利用者による、間の4版が非表示)
1行目: 1行目:
【どくりつしゅうごうぞく (independent set family)】
+
'''【どくりつしゅうごうぞく (independent set family)】'''
  
有限集合 $N$ とその部分集合族 ${\cal I}$ が以下の (I0)--(I2) を満たすとき, ${\bf M}=(N,{\cal I})$ をマトロイドと呼び, ${\cal I}$ ${\bf M}$ の独立集合族と呼ぶ. \vspace{-0.6zw}
+
有限集合 <math>N\,</math> とその部分集合族 <math>{\mathcal I}\,</math> が以下の (I0)-(I2) を満たすとき, <math>{\mathbf M}=(N,{\mathcal I})\,</math> をマトロイドと呼び, <math>{\mathcal I}\,</math> <math>{\mathbf M}\,</math> の独立集合族と呼ぶ.<br><br>
\begin{description}
+
 
\item[(I0)] $\emptyset\in{\cal I}$.
+
<table>
\vspace{-0.6zw}
+
  <tr><td>(I0)</td> <td><math>\emptyset\in{\mathcal I}\,</math>.</td></tr>
\item[(I1)] $I\subseteq J\in{\cal I}\Rightarrow I\in{\cal I}$.
+
  <tr><td>(I1)</td> <td><math>I\subseteq J\in{\mathcal I}\Rightarrow I\in{\mathcal I}\,</math>.</td></tr>
\vspace{-0.6zw}
+
  <tr><td>(I2)</td> <td><math>I,J\in{\mathcal I}\,</math>, <math>|I|<|J|\Rightarrow\exists j\in J\backslash I\,</math>:
\item[(I2)] $I,J\in{\cal I}$, $|I|<|J|\Rightarrow\exists j\in J\backslash I$:
+
<math>I\cup\{j\}\in{\mathcal I}\,</math>.</td></tr>
$I\cup\{j\}\in{\cal I}$.  
+
</table>
\end{description}
+
 
 +
[[Category:グラフ・ネットワーク|どくりつしゅうごうぞく]]

2008年11月13日 (木) 12:59時点における最新版

【どくりつしゅうごうぞく (independent set family)】

有限集合 とその部分集合族 が以下の (I0)-(I2) を満たすとき, をマトロイドと呼び, の独立集合族と呼ぶ.

(I0) .
(I1) .
(I2) , : .