《双対性理論》のソースを表示
←
《双対性理論》
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、以下のグループに属する利用者のみが実行できます:
登録利用者
。
このページは編集や他の操作ができないように保護されています。
このページのソースの閲覧やコピーができます。
'''【そうついせいりろん (duality theory)】''' [[双対性理論]] (duality theory)は,非線形計画のみならず線形計画,多目的計画,離散凸解析などの分野で主問題とその双対問題の関係,および集合や関数の双対関係を説明する重要な基礎理論である [1, 2, 3, 4]. 「双対」 (dual) と「共役」 (conjugate) は元々同義語として用いられ,数学の関数解析の分野では,ノルム空間 <math>X\, </math> 上の有界線形汎関数の全体を<math>X\,</math> の双対空間 (dual space) または共役空間 (conjugate space) といい,<math>X^{*}\, </math> と表して,<math>x\in{X}\, </math> における <math>x^{*}\in{X^*}\,</math> の値を<math>\langle x, x^{*}\rangle\,</math> または <math>x^{*}(x)\,</math> と書く.<math>X\, </math> が <math>n\, </math> 次元実ユークリッド空間 <math>\mathbf{R}^n</math> の場合は,<math>(\mathbf{R}^n)^{*}</math> と <math>\mathbf{R}^n</math> は同一視でき,<math>(\mathbf{R}^n)^{**}=\mathbf{R}^n</math> となり,<math>\langle x, x^{*}\rangle</math> は<math>x\, </math> と <math>x^{*}\, </math> の内積 <math>x^{\top}x^{*}\,</math> となる.以下に述べる事柄は,無限次元空間に対しても拡張できるが,ここでは簡単のため <math>\mathbf{R}^n\,</math> に限定して説明する. 空間 <math>\mathbf{R}^n</math> 上で定義された拡張実数値関数 <math>f: \mathbf{R}^n\to\bar{\mathbf{R}}</math> に対して(ただし,<math>\bar{\mathbf{R}}=\mathbf{R}\cup \{ \infty , -\infty\}</math>), <table align="center"> <tr> <td><math>f^*(\xi):=\sup_{x\in{\mathbf{R}^n}} \{ \, \xi^{\top}x - f(x) \, \}</math> </td> </tr> </table> で定義される関数 <math>f^*\, </math> を <math>f\, </math> の[[共役関数]] (conjugate function) という.共役関数 <math>f^*\, </math> に対して,さらにその共役関数 <math>f^{**}=(f^*)^{*}\,</math> を考えることができるが,<math>f\, </math> が下半連続な真凸関数のときには,<math>f^{**}\, </math> は <math>f\, </math> に一致する.<math>f\, </math> に <math>f^*\, </math> を対応させる写像をルジャンドル-フェンシェル変換 (Legendre-Fenchel transform) と呼ぶ. 下半連続な真凸関数 <math>f: \mathbf{R}^n\times{\mathbf{R}^m}\to\bar{\mathbf{R}}\,</math>に対して,次の問題(P)と(D)を主問題 (primal problem) とその双対問題 (dual problem) と呼ぶ [4]. <table align="center"> <tr> <td><math> \begin{array}{lll} \mbox{(P)} & \min_{x\in \mathbf{R}^n}& \varphi{(x)}:=f(x,0) \\ \mbox{(D)} & \max_{y\in \mathbf{R}^m}& \psi{(y)}:=-f^{*}(0,y) \end{array} </math> </td> </tr> </table> また, <table align="center"> <tr> <td><math>U:=\{u\in{\mathbf{R}^m}\,| \inf_{x\in{\mathbf{R}^n}}f(x,u)<+\infty\}\quad V:=\{v\in{\mathbf{R}^n}\,|\inf_{y\in{\mathbf{R}^m}}f^{*}(v,y)<+\infty\}</math> </td> </tr> </table> とおくと,<math>U\, </math> と <math>V\, </math> は凸集合となる.このとき,以下が成立する. <math>\mbox{(i)}\,</math> <math>\mbox{inf}_{x}\varphi{(x)}\ge\mbox{sup}_{y}\psi{(y)}</math> <math>\mbox{(ii)}\,</math> <math>0\in{\mbox{int}\,U}\;</math> または <math>\; 0\in{\mbox{int}\,V} \Longrightarrow\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}</math> ここで,<math>\mbox{int}\,U</math> は <math>U\, </math> の内部を表す.(i)を弱双対定理 (weak duality theorem),(ii)を[[双対定理]] (duality theorem) と呼び,<math>\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}</math> が満たされるとき,主問題(P)と双対問題(D)の間に双対性 (duality) が成立するという.(i)により,<math>\mbox{sup}_{y}\psi{(y)}=+\infty</math> なら主問題(P)は実行可能解を持たないが,<math>-\infty<\varphi{(\bar{x})}=\psi{(\bar{y})}<+\infty</math> となる <math>\bar{x}</math> と <math>\bar{y}</math> が存在すれば,それぞれ(P)と(D)の最適解となり,強い意味の双対性が成立する.一方,<math>\mbox{inf}_{x}\varphi{(x)}>\mbox{sup}_{y}\psi{(y)}</math> となるとき,主問題と双対問題の間に[[双対性のギャップ]] (duality gap) が存在するという. 主問題(P)において,<math>f(x,u):=c^{\top}x+k(x)+h(b-Ax+u)</math>(ただし,<math>k: \mathbf{R}^n\to\bar{\mathbf{R}}</math> と <math>h: \mathbf{R}^m\to\bar{\mathbf{R}}</math> は下半連続な真凸関数で<math>A\in{\mathbf{R}^{m\times{n}}}</math>, <math>b\in{\mathbf{R}^m}</math>, <math>c\in{\mathbf{R}^n}</math> )とすると,<math>f^{*}(v,y)=-b^{\top}y+h^{*}(y)+k^{*}(A^{\top}y-c+v)</math>となり [4],主問題(P)と双対問題(D)はそれぞれ <table align="center"> <tr> <td><math> \begin{array}{llll} \mbox{min}_{x\in \mathbf{R}^n} & c^{\top}x+k(x)+h(b-Ax) & & (1)\\ \\ \mbox{max}_{y\in \mathbf{R}^m} & b^{\top}y-h^{*}(y)-k^{*}(A^{\top}y-c) & & (2) \end{array} </math> </td> </tr> </table> となる.ここで<math>b\in\mbox{int}\,(A\mbox{dom}k+\mbox{dom}h)\,</math> または<math>c\in\mbox{int}\,(A^{\top}\mbox{dom}h^{*}-\mbox{dom}k^{*})\,</math> が成立すれば,(ii)により主問題 (1) と双対問題 (2) の間に双対性が成立する.(ただし,dom は拡張実数値関数の実効定義域を表す.)これを[[フェンシェルの双対性]] (Fenchel duality) と呼んでいる.通常は,簡略化して <math>c\, </math> と <math>b\, </math> を零ベクトル,<math>-A\, </math> を恒等写像として,新たに<math>f(x)\, </math> を凸関数 <math>f_1(x):=k(x)\,</math> と凹関数 <math>f_2(x):=-h(x)\,</math> の差で表し,主問題 <math>\mbox{min}_{x}\{f_1(x)-f_2(x)\}\,</math>に対して,<math>\mbox{max}_{y}\{f_{2}^{*}(y)-f_{1}^{*}(y)\}</math> をフェンシェルの双対問題 (Fenchel dual problem) と呼ぶ.ただし,<math>f_{2}^{*}(y):=\mbox{inf}_{x\in{\mathbf{R}^n}}\{y^{\top}x-f_{2}(x)\}</math>.双対性は <math>\mbox{int}\,(\mbox{dom}f_1)\,\cap\, \mbox{int}\,(\mbox{dom}f_2)\neq\emptyset</math> のとき成立する.また,<math>k(x):=\mbox{sup}_{s\le{0}}x^{\top}s, h(z):=\mbox{sup}_{w\ge{0}}z^{\top}w</math> とすると,(1) と(2) は線形計画の主問題と双対問題となる [2, 4]. <table align="center"> <tr> <td> <math> \begin{array}{clcll} (\mbox{P}_{LP}) & \mbox{min.} & c^{\top}x & s. t. & x\ge{0}, \ Ax\ge{b}. \\ (\mbox{D}_{LP}) & \mbox{max.} & b^{\top}y & s. t. & y\ge{0}, \ A^{\top}y\le{c}. \end{array} </math></td> </tr> </table> 次に,[[ラグランジュ関数]] (Lagrangian function) を <table align="center"> <tr> <td><math>L(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)-y^{\top}u\,\}</math></td> <td width="100" align="right"><math>(3)\,</math> </td> </tr> </table> と定義する.<math>-L(x,\cdot)=(f(x,\cdot))^{*}, f(x,\cdot)=(-L(x,\cdot))^{*}</math>が成立しているので, <table align="center"> <tr> <td> <math>\varphi{(x)}=\sup_{y}L(x,y), \quad\quad \psi{(y)}=\inf_{x}L(x,y)</math></td> <td width="100" align="right"><math>(4)\,</math> </td> </tr> </table> となる.通常,<math>\mbox{inf}_{x}L(x,\bar{y})=L(\bar{x},\bar{y})=\mbox{sup}_{y}L(\bar{x},y)</math>すなわち,すべての <math>x\in{\mathbf{R}^n}</math>と<math>y\in{\mathbf{R}^m}</math> に対して<math>L(x,\bar{y})\ge{L(\bar{x},\bar{y})}\ge{L(\bar{x},y)}</math>が成り立つとき,<math>(\bar{x},\bar{y})</math> を関数 <math>L\, </math> の <math>\mathbf{R}^{n}\times{\mathbf{R}^m}</math> 上での鞍点 (saddle point) と呼ぶ.(4) により, <math>\mbox{(iii)}\,</math> <math>\mbox{inf}_{x}\varphi{(x)}=\mbox{inf}_{x}\,[\,\mbox{sup}_{y}L(x,y)\,] \ge\mbox{sup}_{y}\,[\,\mbox{inf}_{x}L(x,y)\,]=\mbox{sup}_{y}\psi{(y)}</math> <math>\mbox{(iv)}\,</math> <math>\varphi{(\bar{x})}=\mbox{inf}_{x}\varphi{(x)}=\mbox{sup}_{y}\psi{(y)}=\psi{(\bar{y})} \Longleftrightarrow (\bar{x},\bar{y})</math> が<math>L\,</math>の鞍点 ::<math>\Longleftrightarrow \mbox{min}_{x}\mbox{sup}_{y}L(x,y)=\mbox{max}_{y}\mbox{inf}_{x}L(x,y) \Longleftrightarrow \varphi{(\bar{x})}=L(\bar{x},\bar{y})=\psi{(\bar{y})}</math> が成立する.(iv) を[[鞍点定理]] (saddle point theorem) と呼ぶ.非線形計画問題 :<math>\mbox{(NLP)} \; \; \mbox{min.} \ f_{0}(x) \quad \mbox{s. t.} \; \; g_{i}(x)\le{0} \ (i=1,\ldots, k), \; \; h_{j}(x)=0 \ (j=1,\ldots,l),</math> (ただし,<math>f_0,g_i,h_j</math> は <math>\mathbf{R}^n</math> で定義された実数値関数,<math>k+l=m</math>) に対して, <table align="center"> <tr> <td><math> \begin{array}{rll} F(x) &:= & (g_{1}(x),\ldots,g_{k}(x),h_{1}(x),\ldots,h_{l}(x))^{\top}\\ \theta(w) &:= & \sup_{\lambda,\mu}\{\lambda^{\top}w_{1}+\mu^{\top}w_{2}\,|\, (\lambda,\mu)\in{\mathbf{R}^{k}_{+}\times{\mathbf{R}^{l}}},w=(w_1,w_2)^{\top}\}\\ f(x,u) &:= & f_{0}(x)+\theta{(F(x)+u)} \end{array} </math></td> </tr> </table> とおくと,(3) により<math>y=(\lambda,\mu)=(\lambda_{1},\ldots,\lambda_{k},\mu_{1},\ldots,\mu_{l}) \in{\mathbf{R}^{k}_{+}\times{\mathbf{R}^{l}}}</math>に対する問題(NLP)のラグランジュ関数は <table align="center"> <tr> <td><math>L(x,\lambda,\mu)=f_{0}(x)+\sum_{i=1}^{k}\lambda_{i}g_{i}(x) +\sum_{j=1}^{l}\mu_{j}h_{j}(x)</math></td> <td width="100" align="right"><math>(5)\,</math></td> </tr> </table> となる.この <math>(\lambda,\mu)</math> をラグランジュ乗数 (Lagrange multipliers) と呼ぶ.このとき,主問題と双対問題は <table align="center"> <tr> <td><math> \begin{array}{cllll} (\mbox{P}_{L}) & \mbox{min.} & \displaystyle \sup_{\lambda\ge{0},\mu} L(x, \lambda, \mu) & \mbox{s. t.} & \displaystyle{x \in {\mathbf{R}^n}}, \\ (\mbox{D}_{L}) & \mbox{max.} & \displaystyle \inf_{x} L(x,\lambda,\mu) & \mbox{s. t.} & \displaystyle{0 \le \lambda \in {\mathbf{R}^{k}}}, \displaystyle \mu \in {\mathbf{R}^{l}}, \end{array} </math> </td> </tr> </table> となり,一般に問題<math>(\mbox{D}_{L})</math>をラグランジュの双対問題 (Lagrangian dual problem)と呼ぶ.鞍点定理により,<math>L\, </math> の鞍点 <math>(\bar{x},\bar{\lambda},\bar{\mu})</math> が存在すれば,つまり <table align="center"> <tr> <td><math> \max_{\lambda\ge{0},\mu}L(\bar{x},\lambda,\mu)=L(\bar{x},\bar{\lambda},\bar{\mu}) =\min_{x}L(x,\bar{\lambda},\bar{\mu})</math></td> </tr> </table> が成立すれば,<math>\bar{x}</math> と <math>(\bar{\lambda},\bar{\mu})</math> はそれぞれ問題<math>(\mbox{P}_{L})\,</math>と<math>(\mbox{D}_{L})\,</math>の最適解となり最適値が一致する.これを[[ラグランジュの双対性]] (Lagrangian duality) と呼ぶ.(iv) により,<math>\mbox{min}_{x}\mbox{sup}_{y}L(x,y)=\mbox{max}_{y}\mbox{inf}_{x}L(x,y)\,</math> が成立すれば,この双対性が保証される.この等式に対する十分条件を述べた定理を[[ミニマックス定理 (数理計画における)|ミニマックス定理]](minimax theorem) と呼ぶ [1, 2]. 逆に,主問題の目的関数 <math>f_0\, </math> と制約関数 <math>g_i\, </math> がすべて凸で,<math>h_j\, </math> がすべてアフィン関数であるような[[凸計画問題]] (convex programming problem) においては,適当な条件のもとで,問題<math>(\mbox{P}_{L})\,</math>の最適解 <math>\bar{x}</math> に対して,<math>\bar{\lambda}\ge{0}</math> であるようなラグランジュ乗数 <math>(\bar{\lambda},\bar{\mu})</math> が存在して,<math>(\bar{x},\bar{\lambda},\bar{\mu})</math> がラグランジュ関数 <math>L\, </math> の鞍点となる.また,次のような[[拡張ラグランジュ関数]](augmented Lagrangian function) に基づく双対性も考えられている [2, 3, 4]. <table align="center"> <tr> <td><math>\bar{L}(x,y):=\inf_{u\in{\mathbf{R}^m}}\{\, f(x,u)+r\sigma{(u)}-y^{\top}u\,\}</math> </td> </tr> </table> ただし,<math>r\, </math> は正定数,<math>\sigma:\mathbf{R}^{m}\rightarrow\bar{\mathbf{R}}\,</math> は <math>u\neq{0}\,</math> に対して <math>0=\sigma{(0)}<\sigma{(u)}\,</math> を満足する下半連続な真凸関数である.関数 <math>\sigma\,</math> の例としては <math>\sigma{(u)}:=\frac{1}{2}\|u\|^{2}\,</math> などがある.さらに、最近では大域的最適化(global optimization)や抽象的凸解析(abstract convex analysis)の立場からの研究も行われている[5]. ---- '''参考文献''' [1] J.M.Borwein and A.S.Lewis, ''Convex Analysis and Nonlinear Optimization, Theory and Examples(Second Edition)'', Springer, NewYork, 2006. [2] 福島雅夫,『非線形最適化の基礎』, 朝倉書店, 2001. [3] 今野浩, 山下浩,『非線形計画法』, 日科技連, 1978. [4] R.T. Rockafellar and R. J-B. Wets, ''Variational Analysis'', Springer, Berlin, 1998. [5] A.M.Rubinov, ''Abstract Convexity and Global Optimization'', Kluwer Academic, Dordrecht, 2000. [[Category:非線形計画|そうついせいりろん]]
《双対性理論》
に戻る。
案内メニュー
個人用ツール
ログイン
名前空間
ページ
議論
変種
表示
閲覧
ソースを表示
履歴表示
その他
検索
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
ORWikiへのお問い合わせ
OR学会HP
OR学会アーカイブ集
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報