相補性定理のソースを表示
←
相補性定理
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、以下のグループに属する利用者のみが実行できます:
登録利用者
。
このページは編集や他の操作ができないように保護されています。
このページのソースの閲覧やコピーができます。
'''【そうほせいていり (complementarity slackness theorem)】''' 線形計画問題 <math> \begin{array}{llllllll} \mbox{max.} & \displaystyle \sum_{j=1}^{n}c_jx_j & \\ \mbox{s.t.} & \displaystyle \sum_{j=1}^na_{ij}x_j\leq b_i & (i=1,2,\ldots,m), \\ & x_j \geq 0 & (j=1,2,\ldots,n) \end{array} \,</math> の実行可能解 <math>(x_1,\ldots,x_n) \,</math> と双対問題の実行可能解 <math>(y_1,\ldots,y_m) \,</math>がそれぞれの問題の最適解であるための必要十分条件は,(1) <math>(c_j-\sum_{i=1}^{m}a_{ij}y_i)x_j=0 \ (j=1,2,\ldots,n) \,</math>, かつ(2)<math>(\sum_{j=1}^{n}a_{ij}x_j-b_i)y_i =0 \ (i=1,2,\ldots,m) \,</math> が成り立つことである. この主張を相補性定理と呼ぶ.
相補性定理
に戻る。
案内メニュー
個人用ツール
ログイン
名前空間
ページ
議論
変種
表示
閲覧
ソースを表示
履歴表示
その他
検索
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
ORWikiへのお問い合わせ
OR学会HP
OR学会アーカイブ集
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報