フェンシェルの双対性のソースを表示
←
フェンシェルの双対性
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、以下のグループに属する利用者のみが実行できます:
登録利用者
。
このページは編集や他の操作ができないように保護されています。
このページのソースの閲覧やコピーができます。
【ふぇんしぇるのそうついせい (Fenchel duality)】 2つの下半連続な真凸関数 $k: {\bf R}^n\to\bar{{\bf R}}$ と $h: {\bf R}^m\to\bar{{\bf R}}$, および $A\in{{\bf R}^{m\times{n}}}$, $b\in{{\bf R}^m}$, $c\in{{\bf R}^n}$ に対して, 次の問題のペアに対して成立する双対性のこと. \[ \begin{array}{l} \displaystyle{ \min_{x\in{{\bf R}^n}}\;\{c^{T}x+k(x)+h(b-Ax)\},} \\ \displaystyle{ \max_{y\in{{\bf R}^m}}\;\{b^{T}y-h^{*}(y)-k^{*}(A^{T}y-c)\} } \end{array} \] ここで, ${}^*$ は共役関数を表す. 通常は, 簡略化して目的関数を凸関数 $f_1(x)$ と凹関数 $f_2(x)$ の差で表した主問題 $\min_{x}\{f_1(x)-f_2(x)\}$ に対して, $\max_{y}\{f_{2}^{*}(y)-f_{1}^{*}(y)\}$ をフェンシェルの双対問題と呼び, その双対性を指す.
フェンシェルの双対性
に戻る。
案内メニュー
個人用ツール
ログイン
名前空間
ページ
議論
変種
表示
閲覧
ソースを表示
履歴表示
その他
検索
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
ORWikiへのお問い合わせ
OR学会HP
OR学会アーカイブ集
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報