自己整合障壁関数のソースを表示
←
自己整合障壁関数
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、以下のグループに属する利用者のみが実行できます:
登録利用者
。
このページは編集や他の操作ができないように保護されています。
このページのソースの閲覧やコピーができます。
'''【じこせいごうしょうへきかんすう (self-concordant barrier function)】''' 以下の条件を満たす開凸領域 $F\subseteq {\bf R}^n$ 上の実数値関数 $g$. \vspace{-0.6zw} \begin{enumerate} \item[(1)] 任意の $\bar{x}\in\partial F$ に収束する$F$ の任意の点列 $\{ x^k \}$ に対し,$k\rightarrow \infty$ で $g(x^k)\rightarrow\infty$ となる. \item[(2)] 任意の $x\in F$ において, 任意の方向 $h\in {\bf R}^n$ に対して, 次が成り立つ. \[ \begin{array}{l} \displaystyle{\left|\sum_{i,j,k}\frac{\partial^3 g}{\partial x_i\partial x_j\partial x_k}(x) h_i h_j h_k \right| \leq } \\ \hspace*{20mm} \displaystyle{2 \left|\sum_{i,j}\frac{\partial^2 g}{\partial x_i\partial x_j}(x) h_i h_j \right|^{3/2},} \\[1.4em] \displaystyle{\left( \sum_{i} \frac{\partial g}{\partial x_i}(x) h_i \right)^2 \leq \nu \sum_{i,j}\frac{\partial^2 g}{\partial x_i\partial x_j}(x)h_ih_j.} \end{array} \] \end{enumerate}
自己整合障壁関数
に戻る。
案内メニュー
個人用ツール
ログイン
名前空間
ページ
議論
変種
表示
閲覧
ソースを表示
履歴表示
その他
検索
案内
メインページ
コミュニティ・ポータル
最近の出来事
最近の更新
おまかせ表示
ヘルプ
ORWikiへのお問い合わせ
OR学会HP
OR学会アーカイブ集
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報